IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v66y2014icp461-467.html
   My bibliography  Save this article

Electrical energy production from the integrated aerobic-anaerobic treatment of organic waste by ORC

Author

Listed:
  • Di Maria, Francesco
  • Micale, Caterina
  • Sordi, Alessio

Abstract

The energetic performance of an ORC system fueled by the heat generated from the integrated aerobic/anaerobic treatment of organic waste was analyzed. The temperature and heat content of the exhaust air arising from the aerobic treatment were increased by the combustion of the biogas produced by the anaerobic digestion of a fraction of the same waste. On the basis of the amount of excess air exploited in the process, for each tonne of organic waste treated, it was possible to produce from 30 to 90 kg of exhaust air per day with a mean temperature ranging from 330 to 340 K. By processing from 0.5% to 16% of the whole organic waste in an anaerobic digestion section instead of the aerobic one, it was possible to increase the exhaust air temperature from 340 to 510 K, leading to an increase in the ORC size from about 0.05 to about 1 W/tonne/year. The best energetic utilization of the biogas was achieved for ORC compression ratios from 1.5 to 2 and for maximum air temperatures from 335 to 340 K. In these conditions, by using a micro-ORC system (i.e. <15 kW), it was possible to convert about 20% of the energy content of the biogas into electrical energy.

Suggested Citation

  • Di Maria, Francesco & Micale, Caterina & Sordi, Alessio, 2014. "Electrical energy production from the integrated aerobic-anaerobic treatment of organic waste by ORC," Renewable Energy, Elsevier, vol. 66(C), pages 461-467.
  • Handle: RePEc:eee:renene:v:66:y:2014:i:c:p:461-467
    DOI: 10.1016/j.renene.2013.12.045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148114000160
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2013.12.045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Xiao & Gao, Xingbao & Wang, Wei & Zheng, Lei & Zhou, Yingjun & Sun, Yifei, 2012. "Pilot-scale anaerobic co-digestion of municipal biomass waste: Focusing on biogas production and GHG reduction," Renewable Energy, Elsevier, vol. 44(C), pages 463-468.
    2. Saleh, Bahaa & Koglbauer, Gerald & Wendland, Martin & Fischer, Johann, 2007. "Working fluids for low-temperature organic Rankine cycles," Energy, Elsevier, vol. 32(7), pages 1210-1221.
    3. Athanasoulia, E. & Melidis, P. & Aivasidis, A., 2012. "Optimization of biogas production from waste activated sludge through serial digestion," Renewable Energy, Elsevier, vol. 47(C), pages 147-151.
    4. Wang, E.H. & Zhang, H.G. & Fan, B.Y. & Ouyang, M.G. & Zhao, Y. & Mu, Q.H., 2011. "Study of working fluid selection of organic Rankine cycle (ORC) for engine waste heat recovery," Energy, Elsevier, vol. 36(5), pages 3406-3418.
    5. Gómez, X. & Cuetos, M.J. & Cara, J. & Morán, A. & García, A.I., 2006. "Anaerobic co-digestion of primary sludge and the fruit and vegetable fraction of the municipal solid wastes," Renewable Energy, Elsevier, vol. 31(12), pages 2017-2024.
    6. Qiao, Wei & Yan, Xiuyi & Ye, Junhui & Sun, Yifei & Wang, Wei & Zhang, Zhongzhi, 2011. "Evaluation of biogas production from different biomass wastes with/without hydrothermal pretreatment," Renewable Energy, Elsevier, vol. 36(12), pages 3313-3318.
    7. Wang, Z.Q. & Zhou, N.J. & Guo, J. & Wang, X.Y., 2012. "Fluid selection and parametric optimization of organic Rankine cycle using low temperature waste heat," Energy, Elsevier, vol. 40(1), pages 107-115.
    8. Gewald, Daniela & Siokos, Konstantinos & Karellas, Sotirios & Spliethoff, Hartmut, 2012. "Waste heat recovery from a landfill gas-fired power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1779-1789.
    9. Cavinato, Cristina & Bolzonella, David & Pavan, Paolo & Fatone, Francesco & Cecchi, Franco, 2013. "Mesophilic and thermophilic anaerobic co-digestion of waste activated sludge and source sorted biowaste in pilot- and full-scale reactors," Renewable Energy, Elsevier, vol. 55(C), pages 260-265.
    10. Karellas, Sotirios & Terzis, Konstantinos & Manolakos, Dimitrios, 2011. "Investigation of an autonomous hybrid solar thermal ORC–PV RO desalination system. The Chalki island case," Renewable Energy, Elsevier, vol. 36(2), pages 583-590.
    11. Yamamoto, Takahisa & Furuhata, Tomohiko & Arai, Norio & Mori, Koichi, 2001. "Design and testing of the Organic Rankine Cycle," Energy, Elsevier, vol. 26(3), pages 239-251.
    12. Hung, T.C. & Wang, S.K. & Kuo, C.H. & Pei, B.S. & Tsai, K.F., 2010. "A study of organic working fluids on system efficiency of an ORC using low-grade energy sources," Energy, Elsevier, vol. 35(3), pages 1403-1411.
    13. Hessami, Mir-Akbar & Christensen, Sky & Gani, Robert, 1996. "Anaerobic digestion of household organic waste to produce biogas," Renewable Energy, Elsevier, vol. 9(1), pages 954-957.
    14. Di Maria, Francesco & Sordi, Alessio & Micale, Caterina, 2012. "Optimization of Solid State Anaerobic Digestion by inoculum recirculation: The case of an existing Mechanical Biological Treatment plant," Applied Energy, Elsevier, vol. 97(C), pages 462-469.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vittorio Sessa & Ramchandra Bhandari, 2023. "Composting Heat Recovery for Residential Consumption: An Assessment of Viability," Sustainability, MDPI, vol. 15(5), pages 1-17, February.
    2. Alberto Benato & Alarico Macor, 2017. "Biogas Engine Waste Heat Recovery Using Organic Rankine Cycle," Energies, MDPI, vol. 10(3), pages 1-18, March.
    3. Hajabdollahi, Hassan & Ganjehkaviri, Abdolsaeid & Mohd Jaafar, Mohammad Nazri, 2015. "Thermo-economic optimization of RSORC (regenerative solar organic Rankine cycle) considering hourly analysis," Energy, Elsevier, vol. 87(C), pages 369-380.
    4. Budzianowski, Wojciech M., 2016. "A review of potential innovations for production, conditioning and utilization of biogas with multiple-criteria assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1148-1171.
    5. Di Maria, Francesco & Micale, Caterina, 2015. "The contribution to energy production of the aerobic bioconversion of organic waste by an organic Rankine cycle in an integrated anaerobic–aerobic facility," Renewable Energy, Elsevier, vol. 81(C), pages 770-778.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Di Maria, Francesco & Micale, Caterina, 2015. "The contribution to energy production of the aerobic bioconversion of organic waste by an organic Rankine cycle in an integrated anaerobic–aerobic facility," Renewable Energy, Elsevier, vol. 81(C), pages 770-778.
    2. Liu, Chao & He, Chao & Gao, Hong & Xie, Hui & Li, Yourong & Wu, Shuangying & Xu, Jinliang, 2013. "The environmental impact of organic Rankine cycle for waste heat recovery through life-cycle assessment," Energy, Elsevier, vol. 56(C), pages 144-154.
    3. Bao, Junjiang & Zhao, Li, 2013. "A review of working fluid and expander selections for organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 325-342.
    4. Li, You-Rong & Du, Mei-Tang & Wu, Chun-Mei & Wu, Shuang-Ying & Liu, Chao, 2014. "Potential of organic Rankine cycle using zeotropic mixtures as working fluids for waste heat recovery," Energy, Elsevier, vol. 77(C), pages 509-519.
    5. He, Chao & Liu, Chao & Zhou, Mengtong & Xie, Hui & Xu, Xiaoxiao & Wu, Shuangying & Li, Yourong, 2014. "A new selection principle of working fluids for subcritical organic Rankine cycle coupling with different heat sources," Energy, Elsevier, vol. 68(C), pages 283-291.
    6. Domingues, António & Santos, Helder & Costa, Mário, 2013. "Analysis of vehicle exhaust waste heat recovery potential using a Rankine cycle," Energy, Elsevier, vol. 49(C), pages 71-85.
    7. Roy, J.P. & Misra, Ashok, 2012. "Parametric optimization and performance analysis of a regenerative Organic Rankine Cycle using R-123 for waste heat recovery," Energy, Elsevier, vol. 39(1), pages 227-235.
    8. Di Maria, Francesco & Sordi, Alessio & Cirulli, Giuseppe & Micale, Caterina, 2015. "Amount of energy recoverable from an existing sludge digester with the co-digestion with fruit and vegetable waste at reduced retention time," Applied Energy, Elsevier, vol. 150(C), pages 9-14.
    9. Di Maria, Francesco & Micale, Caterina, 2017. "Energetic potential of the co-digestion of sludge with bio-waste in existing wastewater treatment plant digesters: A case study of an Italian province," Energy, Elsevier, vol. 136(C), pages 110-116.
    10. Lei, Biao & Wu, Yu-Ting & Wang, Wei & Wang, Jing-Fu & Ma, Chong-Fang, 2014. "A study on lubricant oil supply for positive-displacement expanders in small-scale organic Rankine cycles," Energy, Elsevier, vol. 78(C), pages 846-853.
    11. Shu, Gequn & Zhao, Jian & Tian, Hua & Liang, Xingyu & Wei, Haiqiao, 2012. "Parametric and exergetic analysis of waste heat recovery system based on thermoelectric generator and organic rankine cycle utilizing R123," Energy, Elsevier, vol. 45(1), pages 806-816.
    12. Wang, Dongxiang & Ling, Xiang & Peng, Hao & Liu, Lin & Tao, LanLan, 2013. "Efficiency and optimal performance evaluation of organic Rankine cycle for low grade waste heat power generation," Energy, Elsevier, vol. 50(C), pages 343-352.
    13. Fuhaid Alshammari & Apostolos Karvountzis-Kontakiotis & Apostolos Pesyridis & Muhammad Usman, 2018. "Expander Technologies for Automotive Engine Organic Rankine Cycle Applications," Energies, MDPI, vol. 11(7), pages 1-36, July.
    14. Larsen, Ulrik & Pierobon, Leonardo & Haglind, Fredrik & Gabrielii, Cecilia, 2013. "Design and optimisation of organic Rankine cycles for waste heat recovery in marine applications using the principles of natural selection," Energy, Elsevier, vol. 55(C), pages 803-812.
    15. Li, Tailu & Zhu, Jialing & Hu, Kaiyong & Kang, Zhenhua & Zhang, Wei, 2014. "Implementation of PDORC (parallel double-evaporator organic Rankine cycle) to enhance power output in oilfield," Energy, Elsevier, vol. 68(C), pages 680-687.
    16. Vélez, Fredy & Segovia, José J. & Martín, M. Carmen & Antolín, Gregorio & Chejne, Farid & Quijano, Ana, 2012. "A technical, economical and market review of organic Rankine cycles for the conversion of low-grade heat for power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4175-4189.
    17. Subiantoro, Alison & Ooi, Kim Tiow, 2014. "Comparison and performance analysis of the novel revolving vane expander design variants in low and medium pressure applications," Energy, Elsevier, vol. 78(C), pages 747-757.
    18. Cavazzini, G. & Bari, S. & Pavesi, G. & Ardizzon, G., 2017. "A multi-fluid PSO-based algorithm for the search of the best performance of sub-critical Organic Rankine Cycles," Energy, Elsevier, vol. 129(C), pages 42-58.
    19. Ge, Zhong & Wang, Hua & Wang, Hui-Tao & Wang, Jian-Jun & Li, Ming & Wu, Fu-Zhong & Zhang, Song-Yuan, 2015. "Main parameters optimization of regenerative organic Rankine cycle driven by low-temperature flue gas waste heat," Energy, Elsevier, vol. 93(P2), pages 1886-1895.
    20. Ghasemi, Hadi & Paci, Marco & Tizzanini, Alessio & Mitsos, Alexander, 2013. "Modeling and optimization of a binary geothermal power plant," Energy, Elsevier, vol. 50(C), pages 412-428.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:66:y:2014:i:c:p:461-467. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.