IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v6y2013i12p6211-6224d30847.html
   My bibliography  Save this article

Rapid Biogas Production by Compact Multi-Layer Membrane Bioreactor: Efficiency of Synthetic Polymeric Membranes

Author

Listed:
  • Supansa Youngsukkasem

    (School of Engineering, University of Borås, 50190 Borås, Sweden)

  • Hamidreza Barghi

    (School of Engineering, University of Borås, 50190 Borås, Sweden
    Department of Chemical and Biological Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden)

  • Sudip K. Rakshit

    (Department of Chemical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada)

  • Mohammad J. Taherzadeh

    (School of Engineering, University of Borås, 50190 Borås, Sweden)

Abstract

Entrapment of methane-producing microorganisms between semi-permeable synthetic membranes in a multi-layer membrane bioreactor (MMBR) was studied and compared to the digestion capacity of a free-cell digester, using a hydraulic retention time of one day and organic loading rates (OLR) of 3.08, 6.16, and 8.16 g COD/L·day. The reactor was designed to retain bacterial cells with uprising plug flow through a narrow tunnel between membrane layers, in order to acquire maximal mass transfer in a compact bioreactor. Membranes of hydrophobic polyamide 46 (PA) and hydroxyethylated polyamide 46 (HPA) as well as a commercial membrane of polyvinylidene fluoride (PVDF) were examined. While the bacteria in the free-cell digester were washed out, the membrane bioreactor succeeded in retaining them. Cross-flow of the liquid through the membrane surface and diffusion of the substrate through the membranes, using no extra driving force, allowed the bacteria to receive nutrients and to produce biogas. However, the choice of membrane type was crucial. Synthesized hydrophobic PA membrane was not effective for this purpose, producing 50–121 mL biogas/day, while developed HPA membrane and the reference PVDF were able to transfer the nutrients and metabolites while retaining the cells, producing 1102–1633 and 1016–1960 mL biogas/day, respectively.

Suggested Citation

  • Supansa Youngsukkasem & Hamidreza Barghi & Sudip K. Rakshit & Mohammad J. Taherzadeh, 2013. "Rapid Biogas Production by Compact Multi-Layer Membrane Bioreactor: Efficiency of Synthetic Polymeric Membranes," Energies, MDPI, vol. 6(12), pages 1-14, November.
  • Handle: RePEc:gam:jeners:v:6:y:2013:i:12:p:6211-6224:d:30847
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/6/12/6211/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/6/12/6211/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Isci, A. & Demirer, G.N., 2007. "Biogas production potential from cotton wastes," Renewable Energy, Elsevier, vol. 32(5), pages 750-757.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tabatabaei, Meisam & Aghbashlo, Mortaza & Valijanian, Elena & Kazemi Shariat Panahi, Hamed & Nizami, Abdul-Sattar & Ghanavati, Hossein & Sulaiman, Alawi & Mirmohamadsadeghi, Safoora & Karimi, Keikhosr, 2020. "A comprehensive review on recent biological innovations to improve biogas production, Part 1: Upstream strategies," Renewable Energy, Elsevier, vol. 146(C), pages 1204-1220.
    2. Nogueira, Cleitiane da Costa & Padilha, Carlos Eduardo de Araújo & Dantas, Júlia Maria de Medeiros & Medeiros, Fábio Gonçalves Macêdo de & Guilherme, Alexandre de Araújo & Souza, Domingos Fabiano de S, 2021. "In-situ detoxification strategies to boost bioalcohol production from lignocellulosic biomass," Renewable Energy, Elsevier, vol. 180(C), pages 914-936.
    3. Budzianowski, Wojciech M., 2016. "A review of potential innovations for production, conditioning and utilization of biogas with multiple-criteria assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1148-1171.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suberu, Mohammed Yekini & Bashir, Nouruddeen & Mustafa, Mohd. Wazir, 2013. "Biogenic waste methane emissions and methane optimization for bioelectricity in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 643-654.
    2. Hamawand, Ihsan & Sandell, Gary & Pittaway, Pam & Chakrabarty, Sayan & Yusaf, Talal & Chen, Guangnan & Seneweera, Saman & Al-Lwayzy, Saddam & Bennett, John & Hopf, Joshua, 2016. "Bioenergy from Cotton Industry Wastes: A review and potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 435-448.
    3. Amjid, Syed S. & Bilal, Muhammad Q. & Nazir, Muhammad S. & Hussain, Altaf, 2011. "Biogas, renewable energy resource for Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2833-2837, August.
    4. Al Afif, Rafat & Wendland, Martin & Amon, Thomas & Pfeifer, Christoph, 2020. "Supercritical carbon dioxide enhanced pre-treatment of cotton stalks for methane production," Energy, Elsevier, vol. 194(C).
    5. Abdul Aziz, Nur Izzah Hamna & Hanafiah, Marlia M. & Mohamed Ali, Mohamed Yasreen, 2019. "Sustainable biogas production from agrowaste and effluents – A promising step for small-scale industry income," Renewable Energy, Elsevier, vol. 132(C), pages 363-369.
    6. Adl, Mehrdad & Sheng, Kuichuan & Gharibi, Arash, 2012. "Technical assessment of bioenergy recovery from cotton stalks through anaerobic digestion process and the effects of inexpensive pre-treatments," Applied Energy, Elsevier, vol. 93(C), pages 251-260.
    7. Khandaker, Shahjalal & Bashar, M Mahbubul & Islam, Aminul & Hossain, Md. Tofazzal & Teo, Siow Hwa & Awual, Md. Rabiul, 2022. "Sustainable energy generation from textile biowaste and its challenges: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    8. Nafeesa Aman & Anam Maqsood & Malahat Zehra & Zarqa Hassan & M. Usman Farid, 2022. "Enhancement Of Biogas Production From Anaerobic Co-Digestion Of Wastewater Sludge, Kitchen Waste And Manure," Journal of Wastes and Biomass Management (JWBM), Zibeline International Publishing, vol. 4(1), pages 21-25, February.
    9. Cai, Chenggu & Wang, Zhanbiao & Ma, Lei & Xu, Zhaoxian & Yu, Jianming & Li, Fuguang, 2024. "Cotton stalk valorization towards bio-based materials, chemicals, and biofuels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    10. Ly, Hoang Vu & Kim, Jinsoo & Kim, Seung-Soo, 2013. "Pyrolysis characteristics and kinetics of palm fiber in a closed reactor," Renewable Energy, Elsevier, vol. 54(C), pages 91-95.
    11. Miguel-Angel Perea-Moreno & Esther Samerón-Manzano & Alberto-Jesus Perea-Moreno, 2019. "Biomass as Renewable Energy: Worldwide Research Trends," Sustainability, MDPI, vol. 11(3), pages 1-19, February.
    12. Dar, R.A. & Parmar, M. & Dar, E.A. & Sani, R.K. & Phutela, U.G., 2021. "Biomethanation of agricultural residues: Potential, limitations and possible solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    13. Bundhoo, Zumar M.A. & Surroop, Dinesh, 2019. "Evaluation of the potential of bio-methane production from field-based crop residues in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    14. Lai, Chao-Ming & Ke, Guang-Ruei & Chung, Meng-Yu, 2009. "Potentials of food wastes for power generation and energy conservation in Taiwan," Renewable Energy, Elsevier, vol. 34(8), pages 1913-1915.
    15. Jingura, Raphael M. & Matengaifa, Rutendo, 2009. "Optimization of biogas production by anaerobic digestion for sustainable energy development in Zimbabwe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1116-1120, June.
    16. Juan Marquez Gomez & Marley Vanegas Chamorro & Daniel Mendoza Caceres, 2022. "Trends in Research Focused on Hydrogen Production Based on the Web of Science," International Journal of Energy Economics and Policy, Econjournals, vol. 12(4), pages 117-121, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:6:y:2013:i:12:p:6211-6224:d:30847. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.