IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v44y2012i1p649-656.html
   My bibliography  Save this article

Pressure recovery ratio in a variable cooling loads ejector-based multi-evaporator refrigeration system

Author

Listed:
  • Lin, Chen
  • Cai, Wenjian
  • Li, Yanzhong
  • Yan, Jia
  • Hu, Yu

Abstract

In this paper, the Computational Fluid Dynamics (CFD) technique is used to investigate the influences of varying cooling loads on the ejector pressure recovery performance in an ejector-based multi-evaporator refrigeration system (EMERS) using R134a as the refrigerant. The performance of pressure recovery in the EMERS reflects the performance of the compression energy saving. The developed CFD model is first validated by actual experimental data from the EMERS. Turbulence model constants are carefully selected in order to minimize the model prediction error. Over 200 different cases are studied using the model to find the effects of varying cooling loads on pressure recovery ratio. The results indicate that pressure recovery ratio is very sensitive to the varying primary and secondary flow cooling loads. The maximum pressure recovery ratio can reach 60% as the cooling loads vary. It was found that in order to keep the system stable, the primary and secondary cooling loads should be maintained within ±5% and ±10%, respectively, in which case the pressure recovery ratio will have a maximum ratio of 32.8%.

Suggested Citation

  • Lin, Chen & Cai, Wenjian & Li, Yanzhong & Yan, Jia & Hu, Yu, 2012. "Pressure recovery ratio in a variable cooling loads ejector-based multi-evaporator refrigeration system," Energy, Elsevier, vol. 44(1), pages 649-656.
  • Handle: RePEc:eee:energy:v:44:y:2012:i:1:p:649-656
    DOI: 10.1016/j.energy.2012.05.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544212004070
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2012.05.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sarkar, Jahar, 2008. "Optimization of ejector-expansion transcritical CO2 heat pump cycle," Energy, Elsevier, vol. 33(9), pages 1399-1406.
    2. Chunnanond, Kanjanapon & Aphornratana, Satha, 2004. "Ejectors: applications in refrigeration technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(2), pages 129-155, April.
    3. He, S. & Li, Y. & Wang, R.Z., 2009. "Progress of mathematical modeling on ejectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1760-1780, October.
    4. Yari, Mortaza & Mahmoudi, S.M.S., 2011. "Thermodynamic analysis and optimization of novel ejector-expansion TRCC (transcritical CO2) cascade refrigeration cycles (Novel transcritical CO2 cycle)," Energy, Elsevier, vol. 36(12), pages 6839-6850.
    5. Yu, Jianlin & Tian, Gaolei & Xu, Zong, 2009. "Exergy analysis of Joule–Thomson cryogenic refrigeration cycle with an ejector," Energy, Elsevier, vol. 34(11), pages 1864-1869.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin, Chen & Cai, Wenjian & Li, Yanzhong & Yan, Jia & Hu, Yu, 2012. "The characteristics of pressure recovery in an adjustable ejector multi-evaporator refrigeration system," Energy, Elsevier, vol. 46(1), pages 148-155.
    2. Sarkar, Jahar, 2012. "Ejector enhanced vapor compression refrigeration and heat pump systems—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6647-6659.
    3. Haghparast, Payam & Sorin, Mikhail V. & Nesreddine, Hakim, 2018. "The impact of internal ejector working characteristics and geometry on the performance of a refrigeration cycle," Energy, Elsevier, vol. 162(C), pages 728-743.
    4. Bai, Tao & Yan, Gang & Yu, Jianlin, 2015. "Thermodynamics analysis of a modified dual-evaporator CO2 transcritical refrigeration cycle with two-stage ejector," Energy, Elsevier, vol. 84(C), pages 325-335.
    5. Zhang, Ying & Deng, Shuai & Ni, Jiaxin & Zhao, Li & Yang, Xingyang & Li, Minxia, 2017. "A literature research on feasible application of mixed working fluid in flexible distributed energy system," Energy, Elsevier, vol. 137(C), pages 377-390.
    6. Yang, Mina & Jung, Chung Woo & Kang, Yong Tae, 2015. "Development of high efficiency cycles for domestic refrigerator-freezer application," Energy, Elsevier, vol. 93(P2), pages 2258-2266.
    7. Wang, Xiao & Yu, Jianlin, 2015. "An experimental investigation on a novel ejector enhanced refrigeration cycle applied in the domestic refrigerator-freezer," Energy, Elsevier, vol. 93(P1), pages 202-209.
    8. Besagni, Giorgio & Mereu, Riccardo & Inzoli, Fabio, 2016. "Ejector refrigeration: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 373-407.
    9. Wang, Xiao & Yu, Jianlin & Zhou, Mengliu & Lv, Xiaolong, 2014. "Comparative studies of ejector-expansion vapor compression refrigeration cycles for applications in domestic refrigerator-freezers," Energy, Elsevier, vol. 70(C), pages 635-642.
    10. Li, Shengyu & Yan, Jia & Liu, Zhan & Yao, Yong & Li, Xianbi & Wen, Na & Zou, Guorong, 2019. "Optimization on crucial ejector geometries in a multi-evaporator refrigeration system for tropical region refrigerated trucks," Energy, Elsevier, vol. 189(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Chen & Cai, Wenjian & Li, Yanzhong & Yan, Jia & Hu, Yu, 2012. "The characteristics of pressure recovery in an adjustable ejector multi-evaporator refrigeration system," Energy, Elsevier, vol. 46(1), pages 148-155.
    2. Sarkar, Jahar, 2012. "Ejector enhanced vapor compression refrigeration and heat pump systems—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6647-6659.
    3. Bai, Tao & Yan, Gang & Yu, Jianlin, 2015. "Thermodynamics analysis of a modified dual-evaporator CO2 transcritical refrigeration cycle with two-stage ejector," Energy, Elsevier, vol. 84(C), pages 325-335.
    4. Wang, Xiao & Yu, Jianlin & Zhou, Mengliu & Lv, Xiaolong, 2014. "Comparative studies of ejector-expansion vapor compression refrigeration cycles for applications in domestic refrigerator-freezers," Energy, Elsevier, vol. 70(C), pages 635-642.
    5. Sumeru, K. & Nasution, H. & Ani, F.N., 2012. "A review on two-phase ejector as an expansion device in vapor compression refrigeration cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4927-4937.
    6. Bai, Tao & Yu, Jianlin & Yan, Gang, 2016. "Advanced exergy analysis on a modified auto-cascade freezer cycle with an ejector," Energy, Elsevier, vol. 113(C), pages 385-398.
    7. Khennich, Mohammed & Galanis, Nicolas & Sorin, Mikhail, 2016. "Effects of design conditions and irreversibilities on the dimensions of ejectors in refrigeration systems," Applied Energy, Elsevier, vol. 179(C), pages 1020-1031.
    8. Chen, Qi & Yu, Mengqi & Yan, Gang & Yu, Jianlin, 2022. "Thermodynamic analyses of a modified ejector enhanced dual temperature refrigeration cycle for domestic refrigerator/freezer application," Energy, Elsevier, vol. 244(PA).
    9. Bodys, Jakub & Smolka, Jacek & Palacz, Michal & Haida, Michal & Banasiak, Krzysztof & Nowak, Andrzej J. & Hafner, Armin, 2016. "Performance of fixed geometry ejectors with a swirl motion installed in a multi-ejector module of a CO2 refrigeration system," Energy, Elsevier, vol. 117(P2), pages 620-631.
    10. Anas F A Elbarghthi & Saleh Mohamed & Van Vu Nguyen & Vaclav Dvorak, 2020. "CFD Based Design for Ejector Cooling System Using HFOS (1234ze(E) and 1234yf)," Energies, MDPI, vol. 13(6), pages 1-19, March.
    11. Lamberts, Olivier & Chatelain, Philippe & Bourgeois, Nicolas & Bartosiewicz, Yann, 2018. "The compound-choking theory as an explanation of the entrainment limitation in supersonic ejectors," Energy, Elsevier, vol. 158(C), pages 524-536.
    12. Besagni, Giorgio & Mereu, Riccardo & Inzoli, Fabio, 2016. "Ejector refrigeration: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 373-407.
    13. Mohamed, Saleh & Shatilla, Youssef & Zhang, TieJun, 2019. "CFD-based design and simulation of hydrocarbon ejector for cooling," Energy, Elsevier, vol. 167(C), pages 346-358.
    14. Kumar, Vikas & Sachdeva, Gulshan, 2018. "1-D model for finding geometry of a single phase ejector," Energy, Elsevier, vol. 165(PA), pages 75-92.
    15. Hafiz Ali Muhammad & Hafiz Muhammad Abdullah & Zabdur Rehman & Beomjoon Lee & Young-Jin Baik & Jongjae Cho & Muhammad Imran & Manzar Masud & Mohsin Saleem & Muhammad Shoaib Butt, 2020. "Numerical Modeling of Ejector and Development of Improved Methods for the Design of Ejector-Assisted Refrigeration System," Energies, MDPI, vol. 13(21), pages 1-19, November.
    16. Yari, Mortaza & Mehr, A.S. & Mahmoudi, S.M.S., 2013. "Thermodynamic analysis and optimization of a novel dual-evaporator system powered by electrical and solar energy sources," Energy, Elsevier, vol. 61(C), pages 646-656.
    17. Zhou, Shenghui & He, Yang & Chen, Haisheng & Xu, Yujie & Deng, Jianqiang, 2020. "Performance analysis of a novel adiabatic compressed air energy system with ejectors enhanced charging process," Energy, Elsevier, vol. 205(C).
    18. Yilmaz, Tuncay & Erdinç, Mehmet Tahir, 2019. "Energetic and exergetic investigation of a novel refrigeration system utilizing ejector integrated subcooling using different refrigerants," Energy, Elsevier, vol. 168(C), pages 712-727.
    19. Yari, M. & Mehr, A.S. & Mahmoudi, S.M.S., 2013. "Simulation study of the combination of absorption refrigeration and ejector-expansion systems," Renewable Energy, Elsevier, vol. 60(C), pages 370-381.
    20. Zhu, Lin & Yu, Jianlin & Zhou, Mengliu & Wang, Xiao, 2014. "Performance analysis of a novel dual-nozzle ejector enhanced cycle for solar assisted air-source heat pump systems," Renewable Energy, Elsevier, vol. 63(C), pages 735-740.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:44:y:2012:i:1:p:649-656. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.