IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v78y2014icp205-211.html
   My bibliography  Save this article

Numerical study of primary steam superheating effects on steam ejector flow and its pumping performance

Author

Listed:
  • Wang, Xiaodong
  • Dong, Jingliang
  • Li, Ao
  • Lei, Hongjian
  • Tu, Jiyuan

Abstract

The effects of primary steam superheating on steam condensation in nozzle and the performance of steam ejector were investigated using CFD (computational fluid dynamics) method. Using a wet steam model being proposed in our previous study, simulations based on the primary steam with five superheated levels were performed, and the results demonstrate the superheating operation of the primary steam weakens the spontaneous condensation intensity and postpones its occurrence within the nozzle vicinity. Due to the droplets nucleation refinement for the condensation of superheated steam, the mixing process between the primary and the secondary fluids is improved. Consequently, a higher entrainment ratio is achieved. However, the superheating operation may not exceed 20 K, as its contribution on entrainment ratio improvement is not as significant as 0 K–20 K superheating, and too much superheating will requires more energy as input, which is not a practical solution to further improve the steam ejector pumping performance.

Suggested Citation

  • Wang, Xiaodong & Dong, Jingliang & Li, Ao & Lei, Hongjian & Tu, Jiyuan, 2014. "Numerical study of primary steam superheating effects on steam ejector flow and its pumping performance," Energy, Elsevier, vol. 78(C), pages 205-211.
  • Handle: RePEc:eee:energy:v:78:y:2014:i:c:p:205-211
    DOI: 10.1016/j.energy.2014.10.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214011530
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.10.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sharifi, Navid & Boroomand, Masoud & Kouhikamali, Ramin, 2012. "Wet steam flow energy analysis within thermo-compressors," Energy, Elsevier, vol. 47(1), pages 609-619.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Xiaodong & Dong, Jingliang & Zhang, Guangli & Fu, Qiang & Li, He & Han, Yu & Tu, Jiyuan, 2019. "The primary pseudo-shock pattern of steam ejector and its influence on pumping efficiency based on CFD approach," Energy, Elsevier, vol. 167(C), pages 224-234.
    2. Yang, Yan & Zhu, Xiaowei & Yan, Yuying & Ding, Hongbing & Wen, Chuang, 2019. "Performance of supersonic steam ejectors considering the nonequilibrium condensation phenomenon for efficient energy utilisation," Applied Energy, Elsevier, vol. 242(C), pages 157-167.
    3. Jafarian, Ali & Azizi, Mohammad & Forghani, Pezhman, 2016. "Experimental and numerical investigation of transient phenomena in vacuum ejectors," Energy, Elsevier, vol. 102(C), pages 528-536.
    4. Han, Qingyang & Liu, Changchao & Xue, Haoyuan & Zhang, Hailun & Sun, Wenhui & Sun, Wenxu & Jia, Lei, 2023. "Working condition expansion and performance optimization of two-stage ejector based on optimal switching strategy," Energy, Elsevier, vol. 282(C).
    5. Besagni, Giorgio & Mereu, Riccardo & Inzoli, Fabio, 2016. "Ejector refrigeration: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 373-407.
    6. Feng, Haodong & Yao, Ailing & Han, Qingyang & Zhang, Hailun & Jia, Lei & Sun, Wenxu, 2024. "Effect of droplets in the primary flow on ejector performance of MED-TVC systems," Energy, Elsevier, vol. 293(C).
    7. Zhang, Guojie & Dykas, Sławomir & Li, Pan & Li, Hang & Wang, Junlei, 2020. "Accurate condensing steam flow modeling in the ejector of the solar-driven refrigeration system," Energy, Elsevier, vol. 212(C).
    8. Khafaji, H.K. & Shahsavand, A. & Shooshtari, S. H. Rajaee, 2024. "Simultaneous optimization of crude oil refinery vacuum distillation column and corresponding ejector system," Energy, Elsevier, vol. 294(C).
    9. Tashtoush, Bourhan M. & Al-Nimr, Moh'd A. & Khasawneh, Mohammad A., 2019. "A comprehensive review of ejector design, performance, and applications," Applied Energy, Elsevier, vol. 240(C), pages 138-172.
    10. Ahmadpour, A. & Noori Rahim Abadi, S.M.A. & Meyer, J.P., 2017. "On the performance enhancement of thermo-compressor and steam turbine blade cascade in the presence of spontaneous nucleation," Energy, Elsevier, vol. 119(C), pages 675-693.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aliabadi, Mohammad Ali Faghih & Lakzian, Esmail & Khazaei, Iman & Jahangiri, Ali, 2020. "A comprehensive investigation of finding the best location for hot steam injection into the wet steam turbine blade cascade," Energy, Elsevier, vol. 190(C).
    2. Momeni Dolatabadi, Amir & Moslehi, Jamshid & Saffari Pour, Mohsen & Mousavi Ajarostaghi, Seyed Soheil & Poncet, Sébastien & Arıcı, Müslüm, 2022. "Modified model of reduction condensing losses strategy into the wet steam flow considering efficient energy of steam turbine based on injection of nano-droplets," Energy, Elsevier, vol. 242(C).
    3. Hassani, M. & Kouhikamali, R., 2024. "Investigation of two phase liquid jet ejector with simultaneous air and water suction in fresh water distillation system," Energy, Elsevier, vol. 301(C).
    4. Hosseini, Seyed Ali & Lakzian, Esmail & Zarei, Daryoush & Zare, Mehdi, 2024. "Design and optimization of slot number in supercooled vapor suction in steam turbine blades for reducing the wetness," Energy, Elsevier, vol. 301(C).
    5. Sharifi, Navid & Sharifi, Majid, 2014. "Reducing energy consumption of a steam ejector through experimental optimization of the nozzle geometry," Energy, Elsevier, vol. 66(C), pages 860-867.
    6. Zhang, Guojie & Zhang, Xinzhe & Wang, Fangfang & Wang, Dingbiao & Jin, Zunlong & Zhou, Zhongning, 2019. "Design and optimization of novel dehumidification strategies based on modified nucleation model in three-dimensional cascade," Energy, Elsevier, vol. 187(C).
    7. Ahmadpour, A. & Noori Rahim Abadi, S.M.A. & Meyer, J.P., 2017. "On the performance enhancement of thermo-compressor and steam turbine blade cascade in the presence of spontaneous nucleation," Energy, Elsevier, vol. 119(C), pages 675-693.
    8. Ariafar, Kavous & Buttsworth, David & Al-Doori, Ghassan & Malpress, Ray, 2015. "Effect of mixing on the performance of wet steam ejectors," Energy, Elsevier, vol. 93(P2), pages 2030-2041.
    9. Dolatabadi, Amir Momeni & Faghih Aliabadi, Mohammad Ali, 2024. "Evaluating sustainability power plant efficiency: Unveiling the impact of power plant load ratio on holding steam ejector performance," Energy, Elsevier, vol. 305(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:78:y:2014:i:c:p:205-211. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.