IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v66y2014icp860-867.html
   My bibliography  Save this article

Reducing energy consumption of a steam ejector through experimental optimization of the nozzle geometry

Author

Listed:
  • Sharifi, Navid
  • Sharifi, Majid

Abstract

Steam ejectors use pressurized vapor as the motive flow for running in steam cycles. The major parameter that affects the thermal energy consumption is the pressure of motive flow used in this device. In the current study, a malfunctioning experimental ejector is studied numerically to reveal the source of low evacuation rate from a suction chamber. This ejector was designed to operate under a motive pressure of 6 bar. However, the required vacuum in the suction vessel was not attained unless the pressure of motive steam was increased to 8 bar. The fastest and the most inexpensive way of improving the device performance was considered as replacing just the primary nozzle, with no further changes in ejector's body because, the ejector was connected to other unit facilities and hence the ejector replacement was very costly. The optimization procedure was performed through using numerical CFD (Computational Fluid Dynamics) simulations. The shape of internal supersonic nozzle was changed in many CFD analyses and the most optimized nozzle was selected for manufacturing. After installing the designed nozzle, an improved entrainment capability under the nominal pressure of 6 bar was observed and the desired vacuum level was attained.

Suggested Citation

  • Sharifi, Navid & Sharifi, Majid, 2014. "Reducing energy consumption of a steam ejector through experimental optimization of the nozzle geometry," Energy, Elsevier, vol. 66(C), pages 860-867.
  • Handle: RePEc:eee:energy:v:66:y:2014:i:c:p:860-867
    DOI: 10.1016/j.energy.2014.01.055
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214000760
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.01.055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Reddick, Christopher & Sorin, Mikhail & Rheault, Fernand, 2014. "Energy savings in CO2 (carbon dioxide) capture using ejectors for waste heat upgrading," Energy, Elsevier, vol. 65(C), pages 200-208.
    2. Ji, MyoungKuk & Utomo, Tony & Woo, JuSik & Lee, YongHun & Jeong, HyoMin & Chung, HanShik, 2010. "CFD investigation on the flow structure inside thermo vapor compressor," Energy, Elsevier, vol. 35(6), pages 2694-2702.
    3. Sharifi, Navid & Boroomand, Masoud & Kouhikamali, Ramin, 2012. "Wet steam flow energy analysis within thermo-compressors," Energy, Elsevier, vol. 47(1), pages 609-619.
    4. Sharaf, M.A. & Nafey, A.S. & García-Rodríguez, Lourdes, 2011. "Thermo-economic analysis of solar thermal power cycles assisted MED-VC (multi effect distillation-vapor compression) desalination processes," Energy, Elsevier, vol. 36(5), pages 2753-2764.
    5. Sun, Da-Wen, 1996. "Variable geometry ejectors and their applications in ejector refrigeration systems," Energy, Elsevier, vol. 21(10), pages 919-929.
    6. Yari, Mortaza & Mahmoudi, S.M.S., 2011. "Thermodynamic analysis and optimization of novel ejector-expansion TRCC (transcritical CO2) cascade refrigeration cycles (Novel transcritical CO2 cycle)," Energy, Elsevier, vol. 36(12), pages 6839-6850.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karthick, S.K. & Rao, Srisha M.V. & Jagadeesh, G. & Reddy, K.P.J., 2018. "Experimental parametric studies on the performance and mixing characteristics of a low area ratio rectangular supersonic gaseous ejector by varying the secondary flow rate," Energy, Elsevier, vol. 161(C), pages 832-845.
    2. Jie Wang & Hongfang Gu, 2021. "A Study of Moist Air Condensation Characteristics in a Transonic Flow System," Energies, MDPI, vol. 14(13), pages 1-12, July.
    3. Yang, Yan & Zhu, Xiaowei & Yan, Yuying & Ding, Hongbing & Wen, Chuang, 2019. "Performance of supersonic steam ejectors considering the nonequilibrium condensation phenomenon for efficient energy utilisation," Applied Energy, Elsevier, vol. 242(C), pages 157-167.
    4. Jafarian, Ali & Azizi, Mohammad & Forghani, Pezhman, 2016. "Experimental and numerical investigation of transient phenomena in vacuum ejectors," Energy, Elsevier, vol. 102(C), pages 528-536.
    5. Shan, Yong & Zhang, Jing-zhou & Ren, Xiao-wen, 2018. "Numerical modeling on pumping performance of piccolo-tube multi-nozzles supersonic ejector in an oil radiator passage," Energy, Elsevier, vol. 158(C), pages 216-227.
    6. Jingming Dong & Weining Wang & Zhitao Han & Hongbin Ma & Yangbo Deng & Fengmin Su & Xinxiang Pan, 2018. "Experimental Investigation of the Steam Ejector in a Single-Effect Thermal Vapor Compression Desalination System Driven by a Low-Temperature Heat Source," Energies, MDPI, vol. 11(9), pages 1-13, August.
    7. Hassani, M. & Kouhikamali, R., 2024. "Investigation of two phase liquid jet ejector with simultaneous air and water suction in fresh water distillation system," Energy, Elsevier, vol. 301(C).
    8. Besagni, Giorgio & Mereu, Riccardo & Inzoli, Fabio, 2016. "Ejector refrigeration: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 373-407.
    9. Yang, Yan & Karvounis, Nikolas & Walther, Jens Honore & Ding, Hongbing & Wen, Chuang, 2021. "Effect of area ratio of the primary nozzle on steam ejector performance considering nonequilibrium condensations," Energy, Elsevier, vol. 237(C).
    10. Ariafar, Kavous & Buttsworth, David & Al-Doori, Ghassan & Malpress, Ray, 2015. "Effect of mixing on the performance of wet steam ejectors," Energy, Elsevier, vol. 93(P2), pages 2030-2041.
    11. Han, Yu & Wang, Xiaodong & Sun, Hao & Zhang, Guangli & Guo, Lixin & Tu, Jiyuan, 2019. "CFD simulation on the boundary layer separation in the steam ejector and its influence on the pumping performance," Energy, Elsevier, vol. 167(C), pages 469-483.
    12. Zheng, Ping & Li, Bing & Qin, Jingxuan, 2018. "CFD simulation of two-phase ejector performance influenced by different operation conditions," Energy, Elsevier, vol. 155(C), pages 1129-1145.
    13. Expósito Carrillo, José Antonio & Sánchez de La Flor, Francisco José & Salmerón Lissén, José Manuel, 2018. "Single-phase ejector geometry optimisation by means of a multi-objective evolutionary algorithm and a surrogate CFD model," Energy, Elsevier, vol. 164(C), pages 46-64.
    14. Zhang, Shaozhi & Luo, Jielin & Wang, Qin & Chen, Guangming, 2018. "Step utilization of energy with ejector in a heat driven freeze drying system," Energy, Elsevier, vol. 164(C), pages 734-744.
    15. Wang, Chen & Wang, Lei & Wang, Xinli & Zhao, Hongxia, 2017. "Design and numerical investigation of an adaptive nozzle exit position ejector in multi-effect distillation desalination system," Energy, Elsevier, vol. 140(P1), pages 673-681.
    16. Zhang, Kun & Chen, Xue & Markides, Christos N. & Yang, Yong & Shen, Shengqiang, 2016. "Evaluation of ejector performance for an organic Rankine cycle combined power and cooling system," Applied Energy, Elsevier, vol. 184(C), pages 404-412.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Besagni, Giorgio & Mereu, Riccardo & Inzoli, Fabio, 2016. "Ejector refrigeration: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 373-407.
    2. Ahmadpour, A. & Noori Rahim Abadi, S.M.A. & Meyer, J.P., 2017. "On the performance enhancement of thermo-compressor and steam turbine blade cascade in the presence of spontaneous nucleation," Energy, Elsevier, vol. 119(C), pages 675-693.
    3. Ariafar, Kavous & Buttsworth, David & Al-Doori, Ghassan & Malpress, Ray, 2015. "Effect of mixing on the performance of wet steam ejectors," Energy, Elsevier, vol. 93(P2), pages 2030-2041.
    4. Shan, Yong & Zhang, Jing-zhou & Ren, Xiao-wen, 2018. "Numerical modeling on pumping performance of piccolo-tube multi-nozzles supersonic ejector in an oil radiator passage," Energy, Elsevier, vol. 158(C), pages 216-227.
    5. Sun, Fangtian & Fu, Lin & Sun, Jian & Zhang, Shigang, 2014. "A new waste heat district heating system with combined heat and power (CHP) based on ejector heat exchangers and absorption heat pumps," Energy, Elsevier, vol. 69(C), pages 516-524.
    6. Wang, Xiaodong & Dong, Jingliang & Li, Ao & Lei, Hongjian & Tu, Jiyuan, 2014. "Numerical study of primary steam superheating effects on steam ejector flow and its pumping performance," Energy, Elsevier, vol. 78(C), pages 205-211.
    7. Varga, Szabolcs & Oliveira, Armando C. & Palmero-Marrero, Anna & Vrba, Jakub, 2017. "Preliminary experimental results with a solar driven ejector air conditioner in Portugal," Renewable Energy, Elsevier, vol. 109(C), pages 83-92.
    8. Hamid, Mohammed O.A. & Zhang, Bo & Yang, Luopeng, 2014. "Application of field synergy principle for optimization fluid flow and convective heat transfer in a tube bundle of a pre-heater," Energy, Elsevier, vol. 76(C), pages 241-253.
    9. Lou, Juwei & Wang, Jiangfeng & Chen, Liangqi & Wang, Yikai & Zhao, Pan & Wang, Shunsen, 2023. "Multi-objective optimization and off-design performance evaluation of coaxial turbomachines for a novel energy storage-based recuperated S–CO2 Brayton cycle driven by nuclear energy," Energy, Elsevier, vol. 275(C).
    10. Petersen, Nils Hendrik & Arras, Maximilian & Wirsum, Manfred & Ma, Linwei, 2024. "Integration of large-scale heat pumps to assist sustainable water desalination and district cooling," Energy, Elsevier, vol. 289(C).
    11. Jingming Dong & Weining Wang & Zhitao Han & Hongbin Ma & Yangbo Deng & Fengmin Su & Xinxiang Pan, 2018. "Experimental Investigation of the Steam Ejector in a Single-Effect Thermal Vapor Compression Desalination System Driven by a Low-Temperature Heat Source," Energies, MDPI, vol. 11(9), pages 1-13, August.
    12. Li, Long & Liu, Weizao & Qin, Zhifeng & Zhang, Guoquan & Yue, Hairong & Liang, Bin & Tang, Shengwei & Luo, Dongmei, 2021. "Research on integrated CO2 absorption-mineralization and regeneration of absorbent process," Energy, Elsevier, vol. 222(C).
    13. Sözen, Adnan & Yücesu, H. Serdar, 2007. "Performance improvement of absorption heat transformer," Renewable Energy, Elsevier, vol. 32(2), pages 267-284.
    14. He, Wei & Wang, Jihong, 2017. "Feasibility study of energy storage by concentrating/desalinating water: Concentrated Water Energy Storage," Applied Energy, Elsevier, vol. 185(P1), pages 872-884.
    15. Janghorban Esfahani, Iman & Kang, Yong Tae & Yoo, ChangKyoo, 2014. "A high efficient combined multi-effect evaporation–absorption heat pump and vapor-compression refrigeration part 1: Energy and economic modeling and analysis," Energy, Elsevier, vol. 75(C), pages 312-326.
    16. Jayathunga, D.S. & Karunathilake, H.P. & Narayana, M. & Witharana, S., 2024. "Phase change material (PCM) candidates for latent heat thermal energy storage (LHTES) in concentrated solar power (CSP) based thermal applications - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    17. Meyer, A.J. & Harms, T.M. & Dobson, R.T., 2009. "Steam jet ejector cooling powered by waste or solar heat," Renewable Energy, Elsevier, vol. 34(1), pages 297-306.
    18. Chen, Qi & Yu, Mengqi & Yan, Gang & Yu, Jianlin, 2022. "Thermodynamic analyses of a modified ejector enhanced dual temperature refrigeration cycle for domestic refrigerator/freezer application," Energy, Elsevier, vol. 244(PA).
    19. Bodys, Jakub & Smolka, Jacek & Palacz, Michal & Haida, Michal & Banasiak, Krzysztof & Nowak, Andrzej J. & Hafner, Armin, 2016. "Performance of fixed geometry ejectors with a swirl motion installed in a multi-ejector module of a CO2 refrigeration system," Energy, Elsevier, vol. 117(P2), pages 620-631.
    20. Manju, S. & Sagar, Netramani, 2017. "Renewable energy integrated desalination: A sustainable solution to overcome future fresh-water scarcity in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 594-609.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:66:y:2014:i:c:p:860-867. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.