IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v46y2015icp157-165.html
   My bibliography  Save this article

Comparison of exhaust emissions of biodiesel–diesel fuel blends produced from animal fats

Author

Listed:
  • Behçet, Rasim
  • Oktay, Hasan
  • Çakmak, Abdulvahap
  • Aydin, Hüseyin

Abstract

The present paper examines two biodiesels named as fish oil methyl ester (FOME) and chicken oil methyl ester (CFME) produced from low-cost waste fish and chicken oils using the transesterification method, and their fuel properties were compared to EN 14214 and ASTM D6751 biodiesel standards. Then, each methyl esters were blended with the commercial diesel fuel (D2) with a ratio of 20% on volume basis, respectively and two fuel samples named as FOB20 (20% Fish Oil Methyl Ester and 80% D2 fuel) and CFB20 (20% chicken oil methyl ester and 80% D2 fuel) were obtained. An experimental study for investigating the effects of the blended fuels on engine performance and its exhaust emissions was performed by using a single cylinder, four stroke, direct injection and air-cooled diesel engine at different speeds under full load. According to the test results, it was observed that the brake power, torque values and the carbon monoxide (CO), unburnt hydrocarbon (UHC) and carbon dioxide (CO2) concentrations of blended fuels decreased while the NOx concentration and brake specific fuel consumption (bsfc) values increased compared to diesel fuel.

Suggested Citation

  • Behçet, Rasim & Oktay, Hasan & Çakmak, Abdulvahap & Aydin, Hüseyin, 2015. "Comparison of exhaust emissions of biodiesel–diesel fuel blends produced from animal fats," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 157-165.
  • Handle: RePEc:eee:rensus:v:46:y:2015:i:c:p:157-165
    DOI: 10.1016/j.rser.2015.02.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115001033
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.02.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Banković-Ilić, Ivana B. & Stojković, Ivan J. & Stamenković, Olivera S. & Veljkovic, Vlada B. & Hung, Yung-Tse, 2014. "Waste animal fats as feedstocks for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 238-254.
    2. Utlu, Zafer & Koçak, Mevlüt Süreyya, 2008. "The effect of biodiesel fuel obtained from waste frying oil on direct injection diesel engine performance and exhaust emissions," Renewable Energy, Elsevier, vol. 33(8), pages 1936-1941.
    3. Yahyaee, R. & Ghobadian, B. & Najafi, G., 2013. "Waste fish oil biodiesel as a source of renewable fuel in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 312-319.
    4. Ramadhas, A.S. & Muraleedharan, C. & Jayaraj, S., 2005. "Performance and emission evaluation of a diesel engine fueled with methyl esters of rubber seed oil," Renewable Energy, Elsevier, vol. 30(12), pages 1789-1800.
    5. Godiganur, Sharanappa & Suryanarayana Murthy, Ch. & Reddy, Rana Prathap, 2010. "Performance and emission characteristics of a Kirloskar HA394 diesel engine operated on fish oil methyl esters," Renewable Energy, Elsevier, vol. 35(2), pages 355-359.
    6. Chakraborty, Rajat & Gupta, Abhishek.K. & Chowdhury, Ratul, 2014. "Conversion of slaughterhouse and poultry farm animal fats and wastes to biodiesel: Parametric sensitivity and fuel quality assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 120-134.
    7. Köne, Aylin Çigdem & Büke, Tayfun, 2010. "Forecasting of CO2 emissions from fuel combustion using trend analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2906-2915, December.
    8. Meng, Ming & Niu, Dongxiao, 2011. "Modeling CO2 emissions from fossil fuel combustion using the logistic equation," Energy, Elsevier, vol. 36(5), pages 3355-3359.
    9. Gürü, Metin & Koca, Atilla & Can, Özer & Çınar, Can & Şahin, Fatih, 2010. "Biodiesel production from waste chicken fat based sources and evaluation with Mg based additive in a diesel engine," Renewable Energy, Elsevier, vol. 35(3), pages 637-643.
    10. Behçet, Rasim & Yumrutaş, Recep & Oktay, Hasan, 2014. "Effects of fuels produced from fish and cooking oils on performance and emissions of a diesel engine," Energy, Elsevier, vol. 71(C), pages 645-655.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zaharin, M.S.M. & Abdullah, N.R. & Najafi, G. & Sharudin, H. & Yusaf, T., 2017. "Effects of physicochemical properties of biodiesel fuel blends with alcohol on diesel engine performance and exhaust emissions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 475-493.
    2. Santagata, R. & Ripa, M. & Ulgiati, S., 2017. "An environmental assessment of electricity production from slaughterhouse residues. Linking urban, industrial and waste management systems," Applied Energy, Elsevier, vol. 186(P2), pages 175-188.
    3. Erdoğan, Sinan & Balki, Mustafa Kemal & Aydın, Selman & Sayın, Cenk, 2020. "Performance, emission and combustion characteristic assessment of biodiesels derived from beef bone marrow in a diesel generator," Energy, Elsevier, vol. 207(C).
    4. Gad, M.S. & Uysal, Cuneyt & El-Shafay, A.S. & Ağbulut, Ümit, 2024. "Exergetic and exergoeconomic assessments of a diesel engine fuelled with waste chicken fat biodiesel-diesel blends," Energy, Elsevier, vol. 293(C).
    5. Jaikumar, S. & Srinivas, V. & Rajasekhar, M., 2021. "Influence of dispersant added nanoparticle additives with diesel-biodiesel blend on direct injection compression ignition engine: Combustion, engine performance, and exhaust emissions approach," Energy, Elsevier, vol. 224(C).
    6. Masera, Kemal & Hossain, Abul Kalam, 2023. "Advancement of biodiesel fuel quality and NOx emission control techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    7. Shameer, P. Mohamed & Ramesh, K., 2017. "Experimental evaluation on performance, combustion behavior and influence of in-cylinder temperature on NOx emission in a D.I diesel engine using thermal imager for various alternate fuel blends," Energy, Elsevier, vol. 118(C), pages 1334-1344.
    8. Zhang, Yunhua & Lou, Diming & Tan, Piqiang & Hu, Zhiyuan, 2018. "Experimental study on the durability of biodiesel-powered engine equipped with a diesel oxidation catalyst and a selective catalytic reduction system," Energy, Elsevier, vol. 159(C), pages 1024-1034.
    9. Erdoğan, Sinan & Balki, Mustafa Kemal & Aydın, Selman & Sayin, Cenk, 2019. "The best fuel selection with hybrid multiple-criteria decision making approaches in a CI engine fueled with their blends and pure biodiesels produced from different sources," Renewable Energy, Elsevier, vol. 134(C), pages 653-668.
    10. Sakthivel, R. & Ramesh, K. & Purnachandran, R. & Mohamed Shameer, P., 2018. "A review on the properties, performance and emission aspects of the third generation biodiesels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2970-2992.
    11. Sinan Erdogan & Cenk Sayin, 2018. "Selection of the Most Suitable Alternative Fuel Depending on the Fuel Characteristics and Price by the Hybrid MCDM Method," Sustainability, MDPI, vol. 10(5), pages 1-15, May.
    12. Hoseini, S.S. & Najafi, G. & Ghobadian, B. & Mamat, R. & Ebadi, M.T. & Yusaf, Talal, 2018. "Novel environmentally friendly fuel: The effects of nanographene oxide additives on the performance and emission characteristics of diesel engines fuelled with Ailanthus altissima biodiesel," Renewable Energy, Elsevier, vol. 125(C), pages 283-294.
    13. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.
    14. Obed M. Ali & Rizalman Mamat & Gholamhassan Najafi & Talal Yusaf & Seyed Mohammad Safieddin Ardebili, 2015. "Optimization of Biodiesel-Diesel Blended Fuel Properties and Engine Performance with Ether Additive Using Statistical Analysis and Response Surface Methods," Energies, MDPI, vol. 8(12), pages 1-15, December.
    15. El-Shafay, A.S. & Gad, M.S. & Ağbulut, Ümit & Attia, El-Awady, 2023. "Optimization of performance and emission outputs of a CI engine powered with waste fat biodiesel: A detailed RSM, fuzzy multi-objective and MCDM application," Energy, Elsevier, vol. 275(C).
    16. Gnanasekaran, Sakthivel & Saravanan, N. & Ilangkumaran, M., 2016. "Influence of injection timing on performance, emission and combustion characteristics of a DI diesel engine running on fish oil biodiesel," Energy, Elsevier, vol. 116(P1), pages 1218-1229.
    17. El-Shafay, A.S. & Ağbulut, Ümit & Attia, El-Awady & Touileb, Kamel Lounes & Gad, M.S., 2023. "Waste to energy: Production of poultry-based fat biodiesel and experimental assessment of its usability on engine behaviors," Energy, Elsevier, vol. 262(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sakthivel, R. & Ramesh, K. & Purnachandran, R. & Mohamed Shameer, P., 2018. "A review on the properties, performance and emission aspects of the third generation biodiesels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2970-2992.
    2. Gharehghani, Ayatallah & Mirsalim, Mostafa & Hosseini, Reza, 2017. "Effects of waste fish oil biodiesel on diesel engine combustion characteristics and emission," Renewable Energy, Elsevier, vol. 101(C), pages 930-936.
    3. Behçet, Rasim & Yumrutaş, Recep & Oktay, Hasan, 2014. "Effects of fuels produced from fish and cooking oils on performance and emissions of a diesel engine," Energy, Elsevier, vol. 71(C), pages 645-655.
    4. Mofijur, M. & Atabani, A.E. & Masjuki, H.H. & Kalam, M.A. & Masum, B.M., 2013. "A study on the effects of promising edible and non-edible biodiesel feedstocks on engine performance and emissions production: A comparative evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 391-404.
    5. Gnanasekaran, Sakthivel & Saravanan, N. & Ilangkumaran, M., 2016. "Influence of injection timing on performance, emission and combustion characteristics of a DI diesel engine running on fish oil biodiesel," Energy, Elsevier, vol. 116(P1), pages 1218-1229.
    6. Xue, Jinlin & Grift, Tony E. & Hansen, Alan C., 2011. "Effect of biodiesel on engine performances and emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1098-1116, February.
    7. Praveena, V. & Martin, Leenus Jesu & Matijošius, Jonas & Aloui, Fethi & Pugazhendhi, Arivalagan & Varuvel, Edwin Geo, 2024. "A systematic review on biofuel production and utilization from algae and waste feedstocks– a circular economy approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    8. Wan Ghazali, Wan Nor Maawa & Mamat, Rizalman & Masjuki, H.H. & Najafi, Gholamhassan, 2015. "Effects of biodiesel from different feedstocks on engine performance and emissions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 585-602.
    9. Altarazi, Yazan S.M. & Abu Talib, Abd Rahim & Yu, Jianglong & Gires, Ezanee & Abdul Ghafir, Mohd Fahmi & Lucas, John & Yusaf, Talal, 2022. "Effects of biofuel on engines performance and emission characteristics: A review," Energy, Elsevier, vol. 238(PC).
    10. Kumar, Niraj & Varun, & Chauhan, Sant Ram, 2013. "Performance and emission characteristics of biodiesel from different origins: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 633-658.
    11. Sadeghinezhad, E. & Kazi, S.N. & Sadeghinejad, Foad & Badarudin, A. & Mehrali, Mohammad & Sadri, Rad & Reza Safaei, Mohammad, 2014. "A comprehensive literature review of bio-fuel performance in internal combustion engine and relevant costs involvement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 29-44.
    12. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.
    13. Sadeghinezhad, E. & Kazi, S.N. & Badarudin, A. & Oon, C.S. & Zubir, M.N.M. & Mehrali, Mohammad, 2013. "A comprehensive review of bio-diesel as alternative fuel for compression ignition engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 410-424.
    14. Ching-Velasquez, Jonny & Fernández-Lafuente, Roberto & Rodrigues, Rafael C. & Plata, Vladimir & Rosales-Quintero, Arnulfo & Torrestiana-Sánchez, Beatriz & Tacias-Pascacio, Veymar G., 2020. "Production and characterization of biodiesel from oil of fish waste by enzymatic catalysis," Renewable Energy, Elsevier, vol. 153(C), pages 1346-1354.
    15. Sanjid, A. & Masjuki, H.H. & Kalam, M.A. & Rahman, S.M. Ashrafur & Abedin, M.J. & Palash, S.M., 2013. "Impact of palm, mustard, waste cooking oil and Calophyllum inophyllum biofuels on performance and emission of CI engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 664-682.
    16. Sander, Aleksandra & Antonije Košćak, Mihael & Kosir, Dominik & Milosavljević, Nikola & Parlov Vuković, Jelena & Magić, Lana, 2018. "The influence of animal fat type and purification conditions on biodiesel quality," Renewable Energy, Elsevier, vol. 118(C), pages 752-760.
    17. André Cremonez, Paulo & Feroldi, Michael & Cézar Nadaleti, Willian & de Rossi, Eduardo & Feiden, Armin & de Camargo, Mariele Pasuch & Cremonez, Filipe Eliazar & Klajn, Felipe Fernandes, 2015. "Biodiesel production in Brazil: Current scenario and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 415-428.
    18. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K. & Hazrat, M.A., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel – Part 2: Properties, performance and emission characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1129-1146.
    19. Amin Nedayali & Alireza Shirneshan, 2016. "Experimental Study of the Effects of Biodiesel on the Performance of a Diesel Power Generator," Energy & Environment, , vol. 27(5), pages 553-565, August.
    20. M. Anwar & M. G. Rasul & N. M. S. Hassan & M. I. Jahirul & Rezwanul Haque & M. M. Hasan & A. G. M. B. Mustayen & R. Karami & D. Schaller, 2022. "Stone Fruit Seed: A Source of Renewable Fuel for Transport," Energies, MDPI, vol. 15(13), pages 1-21, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:46:y:2015:i:c:p:157-165. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.