IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v36y2011i5p3355-3359.html
   My bibliography  Save this article

Modeling CO2 emissions from fossil fuel combustion using the logistic equation

Author

Listed:
  • Meng, Ming
  • Niu, Dongxiao

Abstract

CO2 emissions from fossil fuel combustion have been known to contribute to the greenhouse effect. Research on emission trends and further forecasting their further values is important for adjusting energy policies, particularly those relative to low carbon. Except for a few countries, the main figures of CO2 emission from fossil fuel combustion in other countries are S-shaped curves. The logistic function is selected to simulate the S-shaped curve, and to improve the goodness of fit, three algorithms were provided to estimate its parameters. Considering the different emission characteristics of different industries, the three algorithms estimated the parameters of CO2 emission in each industry separately. The most suitable parameters for each industry are selected based on the criterion of Mean Absolute Percentage Error (MAPE). With the combined simulation values of the selected models, the estimate of total CO2 emission from fossil fuel combustion is obtained. The empirical analysis of China shows that our method is better than the linear model in terms of goodness of fit and simulation risk.

Suggested Citation

  • Meng, Ming & Niu, Dongxiao, 2011. "Modeling CO2 emissions from fossil fuel combustion using the logistic equation," Energy, Elsevier, vol. 36(5), pages 3355-3359.
  • Handle: RePEc:eee:energy:v:36:y:2011:i:5:p:3355-3359
    DOI: 10.1016/j.energy.2011.03.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544211001988
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2011.03.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rout, Ullash K. & Voβ, Alfred & Singh, Anoop & Fahl, Ulrich & Blesl, Markus & Ó Gallachóir, Brian P., 2011. "Energy and emissions forecast of China over a long-time horizon," Energy, Elsevier, vol. 36(1), pages 1-11.
    2. Hatzigeorgiou, Emmanouil & Polatidis, Heracles & Haralambopoulos, Dias, 2008. "CO2 emissions in Greece for 1990–2002: A decomposition analysis and comparison of results using the Arithmetic Mean Divisia Index and Logarithmic Mean Divisia Index techniques," Energy, Elsevier, vol. 33(3), pages 492-499.
    3. Wang, Feng & Yin, Haitao & Li, Shoude, 2010. "China's renewable energy policy: Commitments and challenges," Energy Policy, Elsevier, vol. 38(4), pages 1872-1878, April.
    4. Ediger, Volkan S. & Akar, Sertac, 2007. "ARIMA forecasting of primary energy demand by fuel in Turkey," Energy Policy, Elsevier, vol. 35(3), pages 1701-1708, March.
    5. Singh, Sanjay Kumar, 2006. "Future mobility in India: Implications for energy demand and CO2 emission," Transport Policy, Elsevier, vol. 13(5), pages 398-412, September.
    6. Ekonomou, L., 2010. "Greek long-term energy consumption prediction using artificial neural networks," Energy, Elsevier, vol. 35(2), pages 512-517.
    7. Pappas, S.Sp. & Ekonomou, L. & Karamousantas, D.Ch. & Chatzarakis, G.E. & Katsikas, S.K. & Liatsis, P., 2008. "Electricity demand loads modeling using AutoRegressive Moving Average (ARMA) models," Energy, Elsevier, vol. 33(9), pages 1353-1360.
    8. Jiang, Yingni, 2009. "Computation of monthly mean daily global solar radiation in China using artificial neural networks and comparison with other empirical models," Energy, Elsevier, vol. 34(9), pages 1276-1283.
    9. He, K. & Lei, Y. & Pan, X. & Zhang, Y. & Zhang, Q. & Chen, D., 2010. "Co-benefits from energy policies in China," Energy, Elsevier, vol. 35(11), pages 4265-4272.
    10. Bianco, Vincenzo & Manca, Oronzio & Nardini, Sergio, 2009. "Electricity consumption forecasting in Italy using linear regression models," Energy, Elsevier, vol. 34(9), pages 1413-1421.
    11. Benghanem, Mohamed & Mellit, Adel, 2010. "Radial Basis Function Network-based prediction of global solar radiation data: Application for sizing of a stand-alone photovoltaic system at Al-Madinah, Saudi Arabia," Energy, Elsevier, vol. 35(9), pages 3751-3762.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haoran Zhao & Sen Guo & Huiru Zhao, 2017. "Energy-Related CO 2 Emissions Forecasting Using an Improved LSSVM Model Optimized by Whale Optimization Algorithm," Energies, MDPI, vol. 10(7), pages 1-15, June.
    2. Meng, Ming & Niu, Dongxiao, 2012. "Three-dimensional decomposition models for carbon productivity," Energy, Elsevier, vol. 46(1), pages 179-187.
    3. Ma, Xuejiao & Wang, Yong & Wang, Chen, 2017. "Low-carbon development of China's thermal power industry based on an international comparison: Review, analysis and forecast," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 942-970.
    4. Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Research on the peak of CO2 emissions in the developing world: Current progress and future prospect," Applied Energy, Elsevier, vol. 235(C), pages 186-203.
    5. Sugiawan, Yogi & Kurniawan, Robi & Managi, Shunsuke, 2019. "Are carbon dioxide emission reductions compatible with sustainable well-being?," Applied Energy, Elsevier, vol. 242(C), pages 1-11.
    6. Zhou, Yang & Liu, Yansui, 2016. "Does population have a larger impact on carbon dioxide emissions than income? Evidence from a cross-regional panel analysis in China," Applied Energy, Elsevier, vol. 180(C), pages 800-809.
    7. Hong Chang & Wei Sun & Xingsheng Gu, 2013. "Forecasting Energy CO 2 Emissions Using a Quantum Harmony Search Algorithm-Based DMSFE Combination Model," Energies, MDPI, vol. 6(3), pages 1-22, March.
    8. Wei Sun & Ming Meng & Yujun He & Hong Chang, 2016. "CO 2 Emissions from China’s Power Industry: Scenarios and Policies for 13th Five-Year Plan," Energies, MDPI, vol. 9(10), pages 1-16, October.
    9. Ma, Xuejiao & Jiang, Ping & Jiang, Qichuan, 2020. "Research and application of association rule algorithm and an optimized grey model in carbon emissions forecasting," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
    10. Debnath, Kumar Biswajit & Mourshed, Monjur, 2018. "Forecasting methods in energy planning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 297-325.
    11. Wen Lei & Shuhua Mao & Yonghong Zhang, 2024. "Estimating China’s CO2 emissions under the influence of COVID-19 epidemic using a novel fractional multivariate nonlinear grey model," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(7), pages 17037-17068, July.
    12. Bright Akwasi Gyamfi & Murad A. Bein & Festus Fatai Adedoyin & Festus Victor Bekun, 2022. "To what extent are pollutant emission intensified by international tourist arrivals? Starling evidence from G7 Countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 7896-7917, June.
    13. Bing Wang & Chao-Qun Cui & Yi-Xin Zhao & Bo Yang & Qing-Zhou Yang, 2019. "Carbon emissions accounting for China’s coal mining sector: invisible sources of climate change," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(3), pages 1345-1364, December.
    14. Sapnken, Flavian Emmanuel & Hong, Kwon Ryong & Chopkap Noume, Hermann & Tamba, Jean Gaston, 2024. "A grey prediction model optimized by meta-heuristic algorithms and its application in forecasting carbon emissions from road fuel combustion," Energy, Elsevier, vol. 302(C).
    15. Cristiana Tudor, 2016. "Predicting the Evolution of CO 2 Emissions in Bahrain with Automated Forecasting Methods," Sustainability, MDPI, vol. 8(9), pages 1-10, September.
    16. Meng, Ming & Niu, Dongxiao & Shang, Wei, 2014. "A small-sample hybrid model for forecasting energy-related CO2 emissions," Energy, Elsevier, vol. 64(C), pages 673-677.
    17. Ali, Wajahat & Abdullah, Azrai & Azam, Muhammad, 2017. "Re-visiting the environmental Kuznets curve hypothesis for Malaysia: Fresh evidence from ARDL bounds testing approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 990-1000.
    18. Bright Akwasi Gyamfi & Murad A Bein & Festus Fatai Adedoyin & Festus Victor Bekun, 2022. "How does energy investment affect the energy utilization-growth-tourism nexus? Evidence from E7 Countries," Energy & Environment, , vol. 33(2), pages 354-376, March.
    19. Behçet, Rasim & Oktay, Hasan & Çakmak, Abdulvahap & Aydin, Hüseyin, 2015. "Comparison of exhaust emissions of biodiesel–diesel fuel blends produced from animal fats," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 157-165.
    20. Meng, Ming & Niu, Dongxiao & Shang, Wei, 2012. "CO2 emissions and economic development: China's 12th five-year plan," Energy Policy, Elsevier, vol. 42(C), pages 468-475.
    21. Ming Meng & Wei Shang & Xinfang Wang & Tingting Pang, 2020. "When will China fulfill its carbon‐related intended nationally determined contributions? An in‐depth environmental Kuznets curve analysis," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(5), pages 1039-1049, October.
    22. Ding, Qi & Xiao, Xinping & Kong, Dekai, 2023. "Estimating energy-related CO2 emissions using a novel multivariable fuzzy grey model with time-delay and interaction effect characteristics," Energy, Elsevier, vol. 263(PE).
    23. Song, Chao & Wang, Tao & Chen, Xiaohong & Shao, Quanxi & Zhang, Xianqi, 2023. "Ensemble framework for daily carbon dioxide emissions forecasting based on the signal decomposition–reconstruction model," Applied Energy, Elsevier, vol. 345(C).
    24. Li, Guohao & Chen, Xue & You, Xue-yi, 2023. "System dynamics prediction and development path optimization of regional carbon emissions: A case study of Tianjin," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suganthi, L. & Samuel, Anand A., 2012. "Energy models for demand forecasting—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1223-1240.
    2. Pin Li & Jinsuo Zhang, 2019. "Is China’s Energy Supply Sustainable? New Research Model Based on the Exponential Smoothing and GM(1,1) Methods," Energies, MDPI, vol. 12(2), pages 1-30, January.
    3. Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    4. Sun-Youn Shin & Han-Gyun Woo, 2022. "Energy Consumption Forecasting in Korea Using Machine Learning Algorithms," Energies, MDPI, vol. 15(13), pages 1-20, July.
    5. Kankal, Murat & AkpInar, Adem & Kömürcü, Murat Ihsan & Özsahin, Talat Sükrü, 2011. "Modeling and forecasting of Turkey's energy consumption using socio-economic and demographic variables," Applied Energy, Elsevier, vol. 88(5), pages 1927-1939, May.
    6. Kaytez, Fazil, 2020. "A hybrid approach based on autoregressive integrated moving average and least-square support vector machine for long-term forecasting of net electricity consumption," Energy, Elsevier, vol. 197(C).
    7. Shao, Zhen & Gao, Fei & Zhang, Qiang & Yang, Shan-Lin, 2015. "Multivariate statistical and similarity measure based semiparametric modeling of the probability distribution: A novel approach to the case study of mid-long term electricity consumption forecasting i," Applied Energy, Elsevier, vol. 156(C), pages 502-518.
    8. Behrang, M.A. & Assareh, E. & Ghalambaz, M. & Assari, M.R. & Noghrehabadi, A.R., 2011. "Forecasting future oil demand in Iran using GSA (Gravitational Search Algorithm)," Energy, Elsevier, vol. 36(9), pages 5649-5654.
    9. Wang, Qiang & Li, Shuyu & Li, Rongrong, 2018. "Forecasting energy demand in China and India: Using single-linear, hybrid-linear, and non-linear time series forecast techniques," Energy, Elsevier, vol. 161(C), pages 821-831.
    10. Karin Kandananond, 2011. "Forecasting Electricity Demand in Thailand with an Artificial Neural Network Approach," Energies, MDPI, vol. 4(8), pages 1-12, August.
    11. Wenting Zhao & Juanjuan Zhao & Xilong Yao & Zhixin Jin & Pan Wang, 2019. "A Novel Adaptive Intelligent Ensemble Model for Forecasting Primary Energy Demand," Energies, MDPI, vol. 12(7), pages 1-28, April.
    12. Debnath, Kumar Biswajit & Mourshed, Monjur, 2018. "Forecasting methods in energy planning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 297-325.
    13. Angelopoulos, Dimitrios & Siskos, Yannis & Psarras, John, 2019. "Disaggregating time series on multiple criteria for robust forecasting: The case of long-term electricity demand in Greece," European Journal of Operational Research, Elsevier, vol. 275(1), pages 252-265.
    14. Atul Anand & L Suganthi, 2018. "Hybrid GA-PSO Optimization of Artificial Neural Network for Forecasting Electricity Demand," Energies, MDPI, vol. 11(4), pages 1-15, March.
    15. Vincenzo Bianco & Annalisa Marchitto & Federico Scarpa & Luca A. Tagliafico, 2020. "Forecasting Energy Consumption in the EU Residential Sector," IJERPH, MDPI, vol. 17(7), pages 1-15, March.
    16. Movagharnejad, Kamyar & Mehdizadeh, Bahman & Banihashemi, Morteza & Kordkheili, Masoud Sheikhi, 2011. "Forecasting the differences between various commercial oil prices in the Persian Gulf region by neural network," Energy, Elsevier, vol. 36(7), pages 3979-3984.
    17. Mergani A. Khairalla & Xu Ning & Nashat T. AL-Jallad & Musaab O. El-Faroug, 2018. "Short-Term Forecasting for Energy Consumption through Stacking Heterogeneous Ensemble Learning Model," Energies, MDPI, vol. 11(6), pages 1-21, June.
    18. Chen, Guangwu & Zhu, Yuhan & Wiedmann, Thomas & Yao, Lina & Xu, Lixiao & Wang, Yafei, 2019. "Urban-rural disparities of household energy requirements and influence factors in China: Classification tree models," Applied Energy, Elsevier, vol. 250(C), pages 1321-1335.
    19. Chabouni, Naima & Belarbi, Yacine & Benhassine, Wassim, 2020. "Electricity load dynamics, temperature and seasonality Nexus in Algeria," Energy, Elsevier, vol. 200(C).
    20. Voyant, Cyril & Muselli, Marc & Paoli, Christophe & Nivet, Marie-Laure, 2011. "Optimization of an artificial neural network dedicated to the multivariate forecasting of daily global radiation," Energy, Elsevier, vol. 36(1), pages 348-359.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:36:y:2011:i:5:p:3355-3359. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.