IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v207y2025ics1364032124006476.html
   My bibliography  Save this article

Low-frequency oscillation in power grids with virtual synchronous generators: A comprehensive review

Author

Listed:
  • Wang, Yang
  • Chen, Song
  • Yang, Mengling
  • Liao, Peng
  • Xiao, Xianyong
  • Xie, Xiaorong
  • Li, Yunwei

Abstract

Virtual synchronous generators (VSGs) are effective solutions for low-inertia issues caused by the high penetration of inverter-based resources. However, low-frequency oscillation (LFO) is introduced as a side effect owing to the simulated swing equations in the VSGs. Although LFO has been widely researched in synchronous generator-dominated power systems, the mechanisms and mitigation strategies of VSG-related LFO have been found to be quite distinct. This study presents a comprehensive review of this emerging issue. First, the different causes of VSG-related LFO are sorted, and a unified explanation from the perspective of power-angle dynamics is provided. Then, control strategies to suppress VSG-related LFO are classified, and the advantages, disadvantages, and applicable scenarios of each method are compared. Finally, several topics for future research are discussed, including the aggregation of massive VSGs, wide-area monitoring and source detection, and advanced suppression strategies.

Suggested Citation

  • Wang, Yang & Chen, Song & Yang, Mengling & Liao, Peng & Xiao, Xianyong & Xie, Xiaorong & Li, Yunwei, 2025. "Low-frequency oscillation in power grids with virtual synchronous generators: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
  • Handle: RePEc:eee:rensus:v:207:y:2025:i:c:s1364032124006476
    DOI: 10.1016/j.rser.2024.114921
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124006476
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.114921?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Assi Obaid, Zeyad & Cipcigan, L.M. & Muhssin, Mazin T., 2017. "Power system oscillations and control: Classifications and PSSs’ design methods: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 839-849.
    2. Zhang, Xinran & Lu, Chao & Liu, Shichao & Wang, Xiaoyu, 2016. "A review on wide-area damping control to restrain inter-area low frequency oscillation for large-scale power systems with increasing renewable generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 45-58.
    3. Ratnam, Kamala Sarojini & Palanisamy, K. & Yang, Guangya, 2020. "Future low-inertia power systems: Requirements, issues, and solutions - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nikolay Nikolaev & Kiril Dimitrov & Yulian Rangelov, 2021. "A Comprehensive Review of Small-Signal Stability and Power Oscillation Damping through Photovoltaic Inverters," Energies, MDPI, vol. 14(21), pages 1-26, November.
    2. Yin, S. & Wang, J. & Li, Z. & Fang, X., 2021. "State-of-the-art short-term electricity market operation with solar generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    3. Zhao, Zhigao & Yang, Jiandong & Chung, C.Y. & Yang, Weijia & He, Xianghui & Chen, Man, 2021. "Performance enhancement of pumped storage units for system frequency support based on a novel small signal model," Energy, Elsevier, vol. 234(C).
    4. Abid, Md. Shadman & Ahshan, Razzaqul & Al Abri, Rashid & Al-Badi, Abdullah & Albadi, Mohammed, 2024. "Techno-economic and environmental assessment of renewable energy sources, virtual synchronous generators, and electric vehicle charging stations in microgrids," Applied Energy, Elsevier, vol. 353(PA).
    5. Shair, Jan & Li, Haozhi & Hu, Jiabing & Xie, Xiaorong, 2021. "Power system stability issues, classifications and research prospects in the context of high-penetration of renewables and power electronics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    6. Kazmi, Hussain & Mehmood, Fahad & Shah, Maryam, 2024. "Quantifying residential energy flexibility potential for demand response programs using observational data from grid outages: Evidence from Pakistan," Energy Policy, Elsevier, vol. 188(C).
    7. Sean Williams & Michael Short & Tracey Crosbie & Maryam Shadman-Pajouh, 2020. "A Decentralized Informatics, Optimization, and Control Framework for Evolving Demand Response Services," Energies, MDPI, vol. 13(16), pages 1-30, August.
    8. Makolo, Peter & Zamora, Ramon & Lie, Tek-Tjing, 2021. "The role of inertia for grid flexibility under high penetration of variable renewables - A review of challenges and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    9. Bingtuan Gao & Chaopeng Xia & Ning Chen & Khalid Mehmood Cheema & Libin Yang & Chunlai Li, 2017. "Virtual Synchronous Generator Based Auxiliary Damping Control Design for the Power System with Renewable Generation," Energies, MDPI, vol. 10(8), pages 1-21, August.
    10. Yohan Jang & Zhuoya Sun & Sanghyuk Ji & Chaeeun Lee & Daeung Jeong & Seunghoon Choung & Sungwoo Bae, 2021. "Grid-Connected Inverter for a PV-Powered Electric Vehicle Charging Station to Enhance the Stability of a Microgrid," Sustainability, MDPI, vol. 13(24), pages 1-16, December.
    11. Carlos Restrepo & Nicolas Yanẽz-Monsalvez & Catalina González-Castaño & Samir Kouro & Jose Rodriguez, 2021. "A Fast Converging Hybrid MPPT Algorithm Based on ABC and P&O Techniques for a Partially Shaded PV System," Mathematics, MDPI, vol. 9(18), pages 1-25, September.
    12. Ratnam Kamala Sarojini & Palanisamy Kaliannan & Yuvaraja Teekaraman & Srete Nikolovski & Hamid Reza Baghaee, 2021. "An Enhanced Emulated Inertia Control for Grid-Connected PV Systems with HESS in a Weak Grid," Energies, MDPI, vol. 14(6), pages 1-19, March.
    13. Milad Shojaee & S. Mohsen Azizi, 2022. "Sequential Design of Decentralized Robust Controllers for Strongly Interconnected Inverter-Based Distributed Generation Systems: A Comparative Study versus Independent Design," Energies, MDPI, vol. 15(23), pages 1-16, November.
    14. Zhao, Zhigao & Yang, Jiandong & Huang, Yifan & Yang, Weijia & Ma, Weichao & Hou, Liangyu & Chen, Man, 2021. "Improvement of regulation quality for hydro-dominated power system: quantifying oscillation characteristic and multi-objective optimization," Renewable Energy, Elsevier, vol. 168(C), pages 606-631.
    15. Junhui, L.I. & Pan, Yahui & Mu, Gang & Chen, Guohang & Zhu, Xingxu & Yan, Ganggui & Li, Cuiping & Jia, Chen, 2024. "A hierarchical demand assessment methodology of peaking resources in multi-areas interconnected systems with a high percentage of renewables," Applied Energy, Elsevier, vol. 367(C).
    16. Myada Shadoul & Razzaqul Ahshan & Rashid S. AlAbri & Abdullah Al-Badi & Mohammed Albadi & Mohsin Jamil, 2022. "A Comprehensive Review on a Virtual-Synchronous Generator: Topologies, Control Orders and Techniques, Energy Storages, and Applications," Energies, MDPI, vol. 15(22), pages 1-27, November.
    17. Ratnam Kamala Sarojini & Kaliannan Palanisamy & Enrico De Tuglie, 2022. "A Fuzzy Logic-Based Emulated Inertia Control to a Supercapacitor System to Improve Inertia in a Low Inertia Grid with Renewables," Energies, MDPI, vol. 15(4), pages 1-23, February.
    18. Kanglin Dai & Wei Xiong & Xufeng Yuan & Huajun Zheng & Qihui Feng & Yutao Xu & Yongxiang Cai & Dan Guo, 2022. "Additional Compound Damping Control to Suppress Low-Frequency Oscillations in a Photovoltaic Plant with a Hybrid Energy Storage System," Energies, MDPI, vol. 15(23), pages 1-13, November.
    19. Benasla, Mokhtar & Allaoui, Tayeb & Brahami, Mostefa & Denaï, Mouloud & Sood, Vijay K., 2018. "HVDC links between North Africa and Europe: Impacts and benefits on the dynamic performance of the European system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3981-3991.
    20. Zhilong Yin & Shuilian Xue & Zhiguo Wang & Feng Yu & Hailiang Chen, 2022. "Flexible Droop Coefficient-Based Inertia and Voltage Cascade Control for Isolated PV-Battery DC Microgrid," Energies, MDPI, vol. 15(24), pages 1-17, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:207:y:2025:i:c:s1364032124006476. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.