IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i24p14022-d706186.html
   My bibliography  Save this article

Grid-Connected Inverter for a PV-Powered Electric Vehicle Charging Station to Enhance the Stability of a Microgrid

Author

Listed:
  • Yohan Jang

    (Department of Electrical Engineering, Hanyang University, Seoul 04763, Korea)

  • Zhuoya Sun

    (Department of Electrical Engineering, Hanyang University, Seoul 04763, Korea)

  • Sanghyuk Ji

    (Department of Electrical Engineering, Hanyang University, Seoul 04763, Korea)

  • Chaeeun Lee

    (Department of Electrical Engineering, Hanyang University, Seoul 04763, Korea)

  • Daeung Jeong

    (Department of Electrical Engineering, Hanyang University, Seoul 04763, Korea)

  • Seunghoon Choung

    (Department of Electrical & Electronic Engineering, Yonam Institute of Technology, Jinju 52821, Korea)

  • Sungwoo Bae

    (Department of Electrical Engineering, Hanyang University, Seoul 04763, Korea)

Abstract

This study proposes a grid-connected inverter for photovoltaic (PV)-powered electric vehicle (EV) charging stations. The significant function of the proposed inverter is to enhance the stability of a microgrid. The proposed inverter can stabilize its grid voltage and frequency by supplying or absorbing active or reactive power to or from a microgrid using EVs and PV generation. Moreover, the proposed inverter can automatically detect an abnormal condition of the grid, such as a blackout, and operate in the islanding mode, which can provide continuous power to local loads using EV vehicle-to-grid service and PV generation. These inverter functions can satisfy the requirements of the grid codes, such as IEEE Standard 1547–2018 and UL 1741 SA. In addition, the proposed inverter can not only enhance the microgrid stability but also charge EVs in an appropriate mode according to the condition of the PV array and EVs. The proposed inverter was verified through experimental results with four scenarios in a lab-scale testbed. These four scenarios include grid normal conditions, grid voltage fluctuations, grid frequency fluctuations, and a power blackout. The experimental results demonstrated that the proposed inverter could enhance the microgrid stability against grid abnormal conditions, fluctuations of grid frequency and voltage, and charge EVs in an appropriate mode.

Suggested Citation

  • Yohan Jang & Zhuoya Sun & Sanghyuk Ji & Chaeeun Lee & Daeung Jeong & Seunghoon Choung & Sungwoo Bae, 2021. "Grid-Connected Inverter for a PV-Powered Electric Vehicle Charging Station to Enhance the Stability of a Microgrid," Sustainability, MDPI, vol. 13(24), pages 1-16, December.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:24:p:14022-:d:706186
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/24/14022/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/24/14022/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Johnson, Samuel C. & Papageorgiou, Dimitri J. & Mallapragada, Dharik S. & Deetjen, Thomas A. & Rhodes, Joshua D. & Webber, Michael E., 2019. "Evaluating rotational inertia as a component of grid reliability with high penetrations of variable renewable energy," Energy, Elsevier, vol. 180(C), pages 258-271.
    2. Cheng, Yi & Azizipanah-Abarghooee, Rasoul & Azizi, Sadegh & Ding, Lei & Terzija, Vladimir, 2020. "Smart frequency control in low inertia energy systems based on frequency response techniques: A review," Applied Energy, Elsevier, vol. 279(C).
    3. Johnson, Samuel C. & Rhodes, Joshua D. & Webber, Michael E., 2020. "Understanding the impact of non-synchronous wind and solar generation on grid stability and identifying mitigation pathways," Applied Energy, Elsevier, vol. 262(C).
    4. Ratnam, Kamala Sarojini & Palanisamy, K. & Yang, Guangya, 2020. "Future low-inertia power systems: Requirements, issues, and solutions - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ali Jawad Alrubaie & Mohamed Salem & Khalid Yahya & Mahmoud Mohamed & Mohamad Kamarol, 2023. "A Comprehensive Review of Electric Vehicle Charging Stations with Solar Photovoltaic System Considering Market, Technical Requirements, Network Implications, and Future Challenges," Sustainability, MDPI, vol. 15(10), pages 1-26, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali Jawad Alrubaie & Mohamed Salem & Khalid Yahya & Mahmoud Mohamed & Mohamad Kamarol, 2023. "A Comprehensive Review of Electric Vehicle Charging Stations with Solar Photovoltaic System Considering Market, Technical Requirements, Network Implications, and Future Challenges," Sustainability, MDPI, vol. 15(10), pages 1-26, May.
    2. Zhang, Tengxi & Xin, Li & Wang, Shunjiang & Guo, Ren & Wang, Wentao & Cui, Jia & Wang, Peng, 2024. "A novel approach of energy and reserve scheduling for hybrid power systems: Frequency security constraints," Applied Energy, Elsevier, vol. 361(C).
    3. Homan, Samuel & Mac Dowell, Niall & Brown, Solomon, 2021. "Grid frequency volatility in future low inertia scenarios: Challenges and mitigation options," Applied Energy, Elsevier, vol. 290(C).
    4. Pampa Sinha & Kaushik Paul & Sanchari Deb & Sulabh Sachan, 2023. "Comprehensive Review Based on the Impact of Integrating Electric Vehicle and Renewable Energy Sources to the Grid," Energies, MDPI, vol. 16(6), pages 1-39, March.
    5. Clift, Dean Holland & Stanley, Cameron & Hasan, Kazi N. & Rosengarten, Gary, 2023. "Assessment of advanced demand response value streams for water heaters in renewable-rich electricity markets," Energy, Elsevier, vol. 267(C).
    6. Makolo, Peter & Zamora, Ramon & Lie, Tek-Tjing, 2021. "The role of inertia for grid flexibility under high penetration of variable renewables - A review of challenges and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    7. Norouzi, Farshid & Hoppe, Thomas & Elizondo, Laura Ramirez & Bauer, Pavol, 2022. "A review of socio-technical barriers to Smart Microgrid development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    8. Li, Zhihao & Yang, Lun & Xu, Yinliang, 2023. "A dynamics-constrained method for distributed frequency regulation in low-inertia power systems," Applied Energy, Elsevier, vol. 344(C).
    9. Debanjan, Mukherjee & Karuna, Kalita, 2022. "An Overview of Renewable Energy Scenario in India and its Impact on Grid Inertia and Frequency Response," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    10. Obara, Shin'ya, 2022. "Resilience of the microgrid with a core substation with 100% hydrogen fuel cell combined cycle and a general substation with variable renewable energy," Applied Energy, Elsevier, vol. 327(C).
    11. Guerra, K. & Haro, P. & Gutiérrez, R.E. & Gómez-Barea, A., 2022. "Facing the high share of variable renewable energy in the power system: Flexibility and stability requirements," Applied Energy, Elsevier, vol. 310(C).
    12. Helistö, Niina & Kiviluoma, Juha & Morales-España, Germán & O’Dwyer, Ciara, 2021. "Impact of operational details and temporal representations on investment planning in energy systems dominated by wind and solar," Applied Energy, Elsevier, vol. 290(C).
    13. Cheng, Yi & Azizipanah-Abarghooee, Rasoul & Azizi, Sadegh & Ding, Lei & Terzija, Vladimir, 2020. "Smart frequency control in low inertia energy systems based on frequency response techniques: A review," Applied Energy, Elsevier, vol. 279(C).
    14. Dong, Zhen & Li, Zhongguo & Liang, Zhongchao & Xu, Yiqiao & Ding, Zhengtao, 2021. "Distributed neural network enhanced power generation strategy of large-scale wind power plant for power expansion," Applied Energy, Elsevier, vol. 303(C).
    15. Garcet, J. & De Meulenaere, R. & Blondeau, J., 2022. "Enabling flexible CHP operation for grid support by exploiting the DHN thermal inertia," Applied Energy, Elsevier, vol. 316(C).
    16. Park, Joungho & Kang, Sungho & Kim, Sunwoo & Kim, Hana & Kim, Sang-Kyung & Lee, Jay H., 2024. "Optimizing green hydrogen systems: Balancing economic viability and reliability in the face of supply-demand volatility," Applied Energy, Elsevier, vol. 368(C).
    17. Pompodakis, Evangelos E. & Kryonidis, Georgios C. & Karapidakis, Emmanuel S., 2023. "Volt/Var control and energy management in non-interconnected insular networks with multiple hybrid power plants," Applied Energy, Elsevier, vol. 331(C).
    18. Ratnam Kamala Sarojini & Kaliannan Palanisamy & Enrico De Tuglie, 2022. "A Fuzzy Logic-Based Emulated Inertia Control to a Supercapacitor System to Improve Inertia in a Low Inertia Grid with Renewables," Energies, MDPI, vol. 15(4), pages 1-23, February.
    19. Pablo Fernández-Bustamante & Oscar Barambones & Isidro Calvo & Cristian Napole & Mohamed Derbeli, 2021. "Provision of Frequency Response from Wind Farms: A Review," Energies, MDPI, vol. 14(20), pages 1-24, October.
    20. Joo, Seongpil & Choi, Jongwun & Lee, Min Chul & Kim, Namkeun, 2021. "Prognosis of combustion instability in a gas turbine combustor using spectral centroid & spread," Energy, Elsevier, vol. 224(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:24:p:14022-:d:706186. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.