Author
Listed:
- Zhang, Jian
- Zhang, Chaobo
- Lu, Jie
- Zhao, Yang
Abstract
Large language models (LLMs) have exhibited great potential in fault diagnosis of heating, ventilation, and air conditioning systems. However, the fault diagnosis accuracy of LLMs is still unsatisfactory, due to the lack of effective diagnosis accuracy enhancement methods for LLMs. To fill this gap, this study proposes a LLM fine-tuning method supervised by data with fault and fault-free labels to enhance the fault diagnosis accuracy of LLMs. This method designs a LLM self-correction strategy to automatically generate a fine-tuning dataset based on the labeled data. The generated fine-tuning dataset is applied to fine-tune a LLM. Moreover, a data augmentation-based approach is put forward to adaptively update the fine-tuning dataset for iteratively developing a high-performance fine-tuned LLM. The proposed method is utilized to fine-tune the GPT-3.5 model using the air handling unit (AHU) fault dataset from the RP-1312 project. The results show that the diagnosis accuracy of the GPT-3.5 model is increased from 29.5 % to 100.0 % after model fine-tuning. Compared with the GPT-4 model, the fine-tuned GPT-3.5 model achieves a 31.1 % higher average diagnosis accuracy. The fine-tuned GPT-3.5 model is also applied to diagnose faults in two AHUs from another open-source dataset to verify the generalization ability of this model. The two AHUs have different system structures and sensor configurations compared to the AHU in the RP-1312 dataset, and this dataset is not utilized to fine-tune the GPT-3.5 model. The average diagnosis accuracy of the GPT-3.5 model is increased from 46.0 % to 99.1 % and from 38.8 % to 98.9 % for the faults in the two AHUs, respectively, after model fine-tuning. Furthermore, the proposed method is verified using two fault datasets from a variable air volume box and a chiller plant system. After fine-tuning the GPT-3.5 model using the two datasets, the average diagnosis accuracy of this model is increased from 33.0 % to 98.3 % for variable air volume box faults and from 36.0 % to 99.1 % for chiller plant system faults. This study provides an effective solution to the development of domain-specific LLMs for this domain.
Suggested Citation
Zhang, Jian & Zhang, Chaobo & Lu, Jie & Zhao, Yang, 2025.
"Domain-specific large language models for fault diagnosis of heating, ventilation, and air conditioning systems by labeled-data-supervised fine-tuning,"
Applied Energy, Elsevier, vol. 377(PA).
Handle:
RePEc:eee:appene:v:377:y:2025:i:pa:s0306261924017616
DOI: 10.1016/j.apenergy.2024.124378
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:377:y:2025:i:pa:s0306261924017616. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.