IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v278y2023ipbs036054422301366x.html
   My bibliography  Save this article

Novel transformer-based self-supervised learning methods for improved HVAC fault diagnosis performance with limited labeled data

Author

Listed:
  • Fan, Cheng
  • Lei, Yutian
  • Sun, Yongjun
  • Mo, Like

Abstract

Existing data-driven HVAC fault diagnosis methods mainly adopt supervised learning paradigms, making them less feasible/implementable for individual buildings with limited labeled data. Considering the demanding requirements of domain expertise and labor work associated in data labeling, advanced data analytics are urgently needed to utilize massive unlabeled operational data for reliable predictive modeling. Therefore, this study proposes a novel transformer-based self-supervised learning methodology for improved HVAC fault diagnosis performance using limited labeled data. Three self-supervised learning approaches are developed to extract knowledge from unlabeled operational data through self-prediction and contrastive learning tasks. A customized transformer-based neural network is designed to ensure the efficiency and effectiveness in tabular data analysis and knowledge transfer. Data experiments have been conducted using multiple HVAC datasets considering different data availabilities, self-supervised learning approaches and model architectures. The results validate the capabilities of self-supervised learning in developing reliable HVAC fault classification models. Compared with conventional supervised learning solutions, the methodology proposed not only substantially reduce the data labelling works required, but also improves the fault diagnosis performance by up to 8.44%. The research outcomes are valuable for upgrading predictive modeling protocols in the building field for developing easy-implementation and high-performance data-driven solutions with limited labeled data.

Suggested Citation

  • Fan, Cheng & Lei, Yutian & Sun, Yongjun & Mo, Like, 2023. "Novel transformer-based self-supervised learning methods for improved HVAC fault diagnosis performance with limited labeled data," Energy, Elsevier, vol. 278(PB).
  • Handle: RePEc:eee:energy:v:278:y:2023:i:pb:s036054422301366x
    DOI: 10.1016/j.energy.2023.127972
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422301366X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127972?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Liping & Braun, James & Dahal, Sujit, 2023. "An evolving learning-based fault detection and diagnosis method: Case study for a passive chilled beam system," Energy, Elsevier, vol. 265(C).
    2. Zhang, Liang & Leach, Matt & Chen, Jianli & Hu, Yuqing, 2023. "Sensor cost-effectiveness analysis for data-driven fault detection and diagnostics in commercial buildings," Energy, Elsevier, vol. 263(PB).
    3. Zhao, Yang & Li, Tingting & Zhang, Xuejun & Zhang, Chaobo, 2019. "Artificial intelligence-based fault detection and diagnosis methods for building energy systems: Advantages, challenges and the future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 85-101.
    4. Chen, Zhelun & O’Neill, Zheng & Wen, Jin & Pradhan, Ojas & Yang, Tao & Lu, Xing & Lin, Guanjing & Miyata, Shohei & Lee, Seungjae & Shen, Chou & Chiosa, Roberto & Piscitelli, Marco Savino & Capozzoli, , 2023. "A review of data-driven fault detection and diagnostics for building HVAC systems," Applied Energy, Elsevier, vol. 339(C).
    5. Fang, Xi & Gong, Guangcai & Li, Guannan & Chun, Liang & Peng, Pei & Li, Wenqiang & Shi, Xing, 2023. "Cross temporal-spatial transferability investigation of deep reinforcement learning control strategy in the building HVAC system level," Energy, Elsevier, vol. 263(PB).
    6. Li, Bingxu & Cheng, Fanyong & Zhang, Xin & Cui, Can & Cai, Wenjian, 2021. "A novel semi-supervised data-driven method for chiller fault diagnosis with unlabeled data," Applied Energy, Elsevier, vol. 285(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fan, Cheng & Wu, Qiuting & Zhao, Yang & Mo, Like, 2024. "Integrating active learning and semi-supervised learning for improved data-driven HVAC fault diagnosis performance," Applied Energy, Elsevier, vol. 356(C).
    2. Fan, Cheng & Chen, Ruikun & Mo, Jinhan & Liao, Longhui, 2024. "Personalized federated learning for cross-building energy knowledge sharing: Cost-effective strategies and model architectures," Applied Energy, Elsevier, vol. 362(C).
    3. Li, Jiangkuan & Lin, Meng & Wang, Bo & Tian, Ruifeng & Tan, Sichao & Li, Yankai & Chen, Junjie, 2024. "Open set recognition fault diagnosis framework based on convolutional prototype learning network for nuclear power plants," Energy, Elsevier, vol. 290(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ssembatya, Martin & Claridge, David E., 2024. "Quantitative fault detection and diagnosis methods for vapour compression chillers: Exploring the potential for field-implementation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    2. Chen, Zhelun & O’Neill, Zheng & Wen, Jin & Pradhan, Ojas & Yang, Tao & Lu, Xing & Lin, Guanjing & Miyata, Shohei & Lee, Seungjae & Shen, Chou & Chiosa, Roberto & Piscitelli, Marco Savino & Capozzoli, , 2023. "A review of data-driven fault detection and diagnostics for building HVAC systems," Applied Energy, Elsevier, vol. 339(C).
    3. Fan, Cheng & Wu, Qiuting & Zhao, Yang & Mo, Like, 2024. "Integrating active learning and semi-supervised learning for improved data-driven HVAC fault diagnosis performance," Applied Energy, Elsevier, vol. 356(C).
    4. Mohammad Mahdi Forootan & Iman Larki & Rahim Zahedi & Abolfazl Ahmadi, 2022. "Machine Learning and Deep Learning in Energy Systems: A Review," Sustainability, MDPI, vol. 14(8), pages 1-49, April.
    5. Ren, Zhengxiong & Han, Hua & Cui, Xiaoyu & Lu, Hailong & Luo, Mingwen, 2023. "Novel data-pulling-based strategy for chiller fault diagnosis in data-scarce scenarios," Energy, Elsevier, vol. 279(C).
    6. Abdellatif Elmouatamid & Brian Fricke & Jian Sun & Philip W. T. Pong, 2023. "Air Conditioning Systems Fault Detection and Diagnosis-Based Sensing and Data-Driven Approaches," Energies, MDPI, vol. 16(12), pages 1-20, June.
    7. Gao, Yuan & Miyata, Shohei & Akashi, Yasunori, 2023. "How to improve the application potential of deep learning model in HVAC fault diagnosis: Based on pruning and interpretable deep learning method," Applied Energy, Elsevier, vol. 348(C).
    8. Li, Tingting & Zhou, Yangze & Zhao, Yang & Zhang, Chaobo & Zhang, Xuejun, 2022. "A hierarchical object oriented Bayesian network-based fault diagnosis method for building energy systems," Applied Energy, Elsevier, vol. 306(PB).
    9. Chen, Zhe & Xiao, Fu & Guo, Fangzhou, 2023. "Similarity learning-based fault detection and diagnosis in building HVAC systems with limited labeled data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    10. Simon P. Melgaard & Kamilla H. Andersen & Anna Marszal-Pomianowska & Rasmus L. Jensen & Per K. Heiselberg, 2022. "Fault Detection and Diagnosis Encyclopedia for Building Systems: A Systematic Review," Energies, MDPI, vol. 15(12), pages 1-50, June.
    11. Ren, Haoshan & Xu, Chengliang & Lyu, Yuanli & Ma, Zhenjun & Sun, Yongjun, 2023. "A thermodynamic-law-integrated deep learning method for high-dimensional sensor fault detection in diverse complex HVAC systems," Applied Energy, Elsevier, vol. 351(C).
    12. Antonio Rosato & Francesco Guarino & Mohammad El Youssef & Alfonso Capozzoli & Massimiliano Masullo & Luigi Maffei, 2022. "Faulty Operation of Coils’ and Humidifier Valves in a Typical Air-Handling Unit: Experimental Impact Assessment of Indoor Comfort and Patterns of Operating Parameters under Mediterranean Climatic Cond," Energies, MDPI, vol. 15(18), pages 1-38, September.
    13. Shariq, M. Hasan & Hughes, Ben Richard, 2020. "Revolutionising building inspection techniques to meet large-scale energy demands: A review of the state-of-the-art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    14. Ibrahim, Muhammad Sohail & Dong, Wei & Yang, Qiang, 2020. "Machine learning driven smart electric power systems: Current trends and new perspectives," Applied Energy, Elsevier, vol. 272(C).
    15. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A novel improved model for building energy consumption prediction based on model integration," Applied Energy, Elsevier, vol. 262(C).
    16. Vladimir Franki & Darin Majnarić & Alfredo Višković, 2023. "A Comprehensive Review of Artificial Intelligence (AI) Companies in the Power Sector," Energies, MDPI, vol. 16(3), pages 1-35, January.
    17. Yoon, Y. & Jung, S. & Im, P. & Salonvaara, M. & Bhandari, M. & Kunwar, N., 2023. "Empirical validation of building energy simulation model input parameter for multizone commercial building during the cooling season," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    18. Sairam, Seshapalli & Seshadhri, Subathra & Marafioti, Giancarlo & Srinivasan, Seshadhri & Mathisen, Geir & Bekiroglu, Korkut, 2022. "Edge-based Explainable Fault Detection Systems for photovoltaic panels on edge nodes," Renewable Energy, Elsevier, vol. 185(C), pages 1425-1440.
    19. Chen, Jianli & Zhang, Liang & Li, Yanfei & Shi, Yifu & Gao, Xinghua & Hu, Yuqing, 2022. "A review of computing-based automated fault detection and diagnosis of heating, ventilation and air conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    20. Amir Rafati & Hamid Reza Shaker & Saman Ghahghahzadeh, 2022. "Fault Detection and Efficiency Assessment for HVAC Systems Using Non-Intrusive Load Monitoring: A Review," Energies, MDPI, vol. 15(1), pages 1-16, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:278:y:2023:i:pb:s036054422301366x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.