IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i20p8930-d1499387.html
   My bibliography  Save this article

Optimal Capacity Allocation for Life Cycle Multiobjective Integrated Energy Systems Considering Capacity Tariffs and Eco-Indicator 99

Author

Listed:
  • Jiyong Li

    (College of Electrical Engineering, Guangxi University, Nanning 530004, China)

  • Zeyi Hua

    (College of Electrical Engineering, Guangxi University, Nanning 530004, China)

  • Lin Tian

    (College of Electrical Engineering, Guangxi University, Nanning 530004, China)

  • Peiwen Chen

    (College of Electrical Engineering, Guangxi University, Nanning 530004, China)

  • Hao Dong

    (College of Electrical Engineering, Guangxi University, Nanning 530004, China)

Abstract

Traditional energy systems pose a significant threat to human social development due to fossil fuel depletion and environmental pollution. Integrated energy systems (IESs) are widely studied and applied due to their clean and low-carbon characteristics to achieve sustainable development. However, as integrated energy systems expand, their impact on ecosystems becomes more pronounced. This paper introduces the concept of the ecological damage index (EDI) to promote the sustainable development of integrated energy systems. Moreover, the introduction of a capacity tariff mechanism will impact the energy structure, making it essential to consider its effects on capacity allocation within integrated energy systems. This paper proposes a multiobjective optimization framework for constructing a capacity planning model for integrated energy systems, focusing on achieving a multidimensional balance between the economy, environment, and ecosystem using the life cycle assessment (LCA) method. Finally, the nondominated sorting genetic algorithm-II (NSGA-II) is employed to optimize the three objectives and obtain the Pareto frontier solution set. The optimal solution is selected from the solution set by combining the technique for order preference by similarity to ideal solution (TOPSIS) and Shannon entropy method. In comparison to scenarios with incomplete considerations, the multiobjective capacity optimization model proposed in this study exhibits significant improvements across the three metrics of cost, carbon emissions, and the ecological damage index, with a 19.05% reduction in costs, a 26.24% decrease in carbon emissions, and an 8.85% decrease in the ecological damage index. The study demonstrates that the model abandons traditional single-objective research methods by incorporating a multidimensional balance of the economy, environment, and ecosystems. This approach forms a foundational basis for selecting the optimal energy mix and achieving sustainable development in integrated energy systems. The life cycle assessment methodology evaluates impacts across all stages of integrated energy systems, providing a comprehensive basis for assessing and planning the sustainable development of the systems. The study offers guidance for the rational allocation of the integrated energy system capacity and advances the sustainable development of such systems.

Suggested Citation

  • Jiyong Li & Zeyi Hua & Lin Tian & Peiwen Chen & Hao Dong, 2024. "Optimal Capacity Allocation for Life Cycle Multiobjective Integrated Energy Systems Considering Capacity Tariffs and Eco-Indicator 99," Sustainability, MDPI, vol. 16(20), pages 1-22, October.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:20:p:8930-:d:1499387
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/20/8930/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/20/8930/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carneiro, Patrícia & Ferreira, Paula, 2012. "The economic, environmental and strategic value of biomass," Renewable Energy, Elsevier, vol. 44(C), pages 17-22.
    2. Martínez-Martínez, Yenisleidy & Dewulf, Jo & Aguayo, Mauricio & Casas-Ledón, Yannay, 2023. "Sustainable wind energy planning through ecosystem service impact valuation and exergy: A study case in south-central Chile," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    3. Peri, Erez & Tal, Alon, 2020. "A sustainable way forward for wind power: Assessing turbines’ environmental impacts using a holistic GIS analysis," Applied Energy, Elsevier, vol. 279(C).
    4. Wang, Yongli & Huang, Feifei & Tao, Siyi & Ma, Yang & Ma, Yuze & Liu, Lin & Dong, Fugui, 2022. "Multi-objective planning of regional integrated energy system aiming at exergy efficiency and economy," Applied Energy, Elsevier, vol. 306(PB).
    5. Hou, Hui & Xu, Tao & Wu, Xixiu & Wang, Huan & Tang, Aihong & Chen, Yangyang, 2020. "Optimal capacity configuration of the wind-photovoltaic-storage hybrid power system based on gravity energy storage system," Applied Energy, Elsevier, vol. 271(C).
    6. Zhang, Lihui & Li, Songrui & Hu, Yitang & Nie, Qingyun, 2022. "Economic optimization of a bioenergy-based hybrid renewable energy system under carbon policies—from the life-cycle perspective," Applied Energy, Elsevier, vol. 310(C).
    7. Fan, Wei & Ju, Liwei & Tan, Zhongfu & Li, Xiangguang & Zhang, Amin & Li, Xudong & Wang, Yueping, 2023. "Two-stage distributionally robust optimization model of integrated energy system group considering energy sharing and carbon transfer," Applied Energy, Elsevier, vol. 331(C).
    8. Bhatti, Bilal Ahmad & Hanif, Sarmad & Alam, Jan & Mitra, Bhaskar & Kini, Roshan & Wu, Di, 2023. "Using energy storage systems to extend the life of hydropower plants," Applied Energy, Elsevier, vol. 337(C).
    9. Wang, Rutian & Wen, Xiangyun & Wang, Xiuyun & Fu, Yanbo & Zhang, Yu, 2022. "Low carbon optimal operation of integrated energy system based on carbon capture technology, LCA carbon emissions and ladder-type carbon trading," Applied Energy, Elsevier, vol. 311(C).
    10. He, Guannan & Ciez, Rebecca & Moutis, Panayiotis & Kar, Soummya & Whitacre, Jay F., 2020. "The economic end of life of electrochemical energy storage," Applied Energy, Elsevier, vol. 273(C).
    11. Viacheslav Pershukov & Vladimir Artisyuk & Andrey Kashirsky, 2022. "Paving the Way to Green Status for Nuclear Power," Sustainability, MDPI, vol. 14(15), pages 1-10, July.
    12. Roth, Ian F. & Ambs, Lawrence L., 2004. "Incorporating externalities into a full cost approach to electric power generation life-cycle costing," Energy, Elsevier, vol. 29(12), pages 2125-2144.
    13. Terlouw, Tom & AlSkaif, Tarek & Bauer, Christian & Mazzotti, Marco & McKenna, Russell, 2023. "Designing residential energy systems considering prospective costs and life cycle GHG emissions," Applied Energy, Elsevier, vol. 331(C).
    14. Qu, Yang & Hooper, Tara & Austen, Melanie C. & Papathanasopoulou, Eleni & Huang, Junling & Yan, Xiaoyu, 2023. "Development of a computable general equilibrium model based on integrated macroeconomic framework for ocean multi-use between offshore wind farms and fishing activities in Scotland," Applied Energy, Elsevier, vol. 332(C).
    15. Chen, Xianqing & Dong, Wei & Yang, Qiang, 2022. "Robust optimal capacity planning of grid-connected microgrid considering energy management under multi-dimensional uncertainties," Applied Energy, Elsevier, vol. 323(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Jing & Wang, Xiaoying & Gu, Yujiong & Ma, Suxia, 2023. "A data-based day-ahead scheduling optimization approach for regional integrated energy systems with varying operating conditions," Energy, Elsevier, vol. 283(C).
    2. Zhao, Naixin & Gu, Wenbo & Zheng, Zipeng & Ma, Tao, 2023. "Multi-objective bi-level planning of the integrated energy system considering uncertain user loads and carbon emission during the equipment manufacturing process," Renewable Energy, Elsevier, vol. 216(C).
    3. Liu, Dewen & Luo, Zhao & Qin, Jinghui & Wang, Hua & Wang, Gang & Li, Zhao & Zhao, Weijie & Shen, Xin, 2023. "Low-carbon dispatch of multi-district integrated energy systems considering carbon emission trading and green certificate trading," Renewable Energy, Elsevier, vol. 218(C).
    4. Zhu, Mengshu & Fang, Jiakun & Ai, Xiaomeng & Cui, Shichang & Feng, Yuang & Li, Peng & Zhang, Yihan & Zheng, Yongle & Chen, Zhe & Wen, Jinyu, 2023. "A comprehensive methodology for optimal planning of remote integrated energy systems," Energy, Elsevier, vol. 285(C).
    5. Yang, Lihua & Wu, Xiao, 2024. "Net-zero carbon configuration approach for direct air carbon capture based integrated energy system considering dynamic characteristics of CO2 adsorption and desorption," Applied Energy, Elsevier, vol. 358(C).
    6. Wang, Jiangjiang & Deng, Hongda & Qi, Xiaoling, 2022. "Cost-based site and capacity optimization of multi-energy storage system in the regional integrated energy networks," Energy, Elsevier, vol. 261(PA).
    7. Enevoldsen, Peter & Sovacool, Benjamin K., 2016. "Integrating power systems for remote island energy supply: Lessons from Mykines, Faroe Islands," Renewable Energy, Elsevier, vol. 85(C), pages 642-648.
    8. Jiaqi Wu & Qian Zhang & Yangdong Lu & Tianxi Qin & Jianyong Bai, 2023. "Source-Load Coordinated Low-Carbon Economic Dispatch of Microgrid including Electric Vehicles," Sustainability, MDPI, vol. 15(21), pages 1-21, October.
    9. Zhang, Zhonglian & Yang, Xiaohui & Li, Moxuan & Deng, Fuwei & Xiao, Riying & Mei, Linghao & Hu, Zecheng, 2023. "Optimal configuration of improved dynamic carbon neutral energy systems based on hybrid energy storage and market incentives," Energy, Elsevier, vol. 284(C).
    10. Leonel Jorge Ribeiro Nunes & Radu Godina & João Carlos de Oliveira Matias, 2019. "Technological Innovation in Biomass Energy for the Sustainable Growth of Textile Industry," Sustainability, MDPI, vol. 11(2), pages 1-12, January.
    11. Hong, Sanghyun & Bradshaw, Corey J.A. & Brook, Barry W., 2014. "South Korean energy scenarios show how nuclear power can reduce future energy and environmental costs," Energy Policy, Elsevier, vol. 74(C), pages 569-578.
    12. Liu, Liwei & Ye, Junhong & Zhao, Yufei & Zhao, Erdong, 2015. "The plight of the biomass power generation industry in China – A supply chain risk perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 680-692.
    13. Natalia Matłok & Grzegorz Zaguła & Józef Gorzelany & Maciej Balawejder, 2024. "Analysis of the Energy Potential of Waste Biomass Generated from Fruit Tree Seedling Production," Energies, MDPI, vol. 17(23), pages 1-13, November.
    14. Wang, Yongli & Guo, Lu & Wang, Yanan & Zhang, Yunfei & Zhang, Siwen & Liu, Zeqiang & Xing, Juntai & Liu, Ximei, 2024. "Bi-level programming optimization method of rural integrated energy system based on coupling coordination degree of energy equipment," Energy, Elsevier, vol. 298(C).
    15. Li, Weiwei & Qian, Tong & Zhao, Wei & Huang, Wenwei & Zhang, Yin & Xie, Xuehua & Tang, Wenhu, 2023. "Decentralized optimization for integrated electricity–heat systems with data center based energy hub considering communication packet loss," Applied Energy, Elsevier, vol. 350(C).
    16. Amiri-Pebdani, Sima & Alinaghian, Mahdi & Khosroshahi, Hossein, 2023. "Pricing in competitive energy supply chains considering government interventions to support CCS under cap-and-trade regulations: A game-theoretic approach," Energy Policy, Elsevier, vol. 179(C).
    17. Emrani, Anisa & Berrada, Asmae & Bakhouya, Mohamed, 2022. "Optimal sizing and deployment of gravity energy storage system in hybrid PV-Wind power plant," Renewable Energy, Elsevier, vol. 183(C), pages 12-27.
    18. Nir Becker & David Soloveitchik & Moshe Olshansky, 2012. "A Weighted Average Incorporation of Pollution Costs into the Electrical Expansion Planning," Energy & Environment, , vol. 23(1), pages 1-15, January.
    19. Pusceddu, Elian & Zakeri, Behnam & Castagneto Gissey, Giorgio, 2021. "Synergies between energy arbitrage and fast frequency response for battery energy storage systems," Applied Energy, Elsevier, vol. 283(C).
    20. Lei Yao & Chongtao Bai & Hao Fu & Suhua Lou & Yan Fu, 2023. "Optimization of Expressway Microgrid Construction Mode and Capacity Configuration Considering Carbon Trading," Energies, MDPI, vol. 16(18), pages 1-17, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:20:p:8930-:d:1499387. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.