IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v185y2023ics1364032123004860.html
   My bibliography  Save this article

Carbon footprint of hydrogen-powered inland shipping: Impacts and hotspots

Author

Listed:
  • Evers, V.H.M.
  • Kirkels, A.F.
  • Godjevac, M.

Abstract

The shipping sector is facing increasing pressure to implement clean fuels and drivetrains. Especially hydrogen-fuel cell drivetrains seem attractive. Although several studies have been conducted to assess the carbon footprint of hydrogen and its application in ships, their results remain hard to interpret and compare. Namely, it is necessary to include a variety of drivetrain solutions, and different studies are based on various assumptions and are expressed in other units. This paper addresses this problem by offering a three-step meta-review of life cycle assessment studies. First, a literature review was conducted. Second, results from the literature were harmonized to make the different analyses comparable, serving cross-examination. The entire life cycle of both the fuels and drivetrains were included. The results showed that the dominant impact was fuel use and related fuel production. And finally, life-cycle hot spots have been identified by looking at the effect of specific configurations in more detail. Hydrogen production by electrolysis powered by wind has the most negligible impact. For this ultra-low carbon pathway, the modes of hydrogen transport and the use of specific materials and components become relevant.

Suggested Citation

  • Evers, V.H.M. & Kirkels, A.F. & Godjevac, M., 2023. "Carbon footprint of hydrogen-powered inland shipping: Impacts and hotspots," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
  • Handle: RePEc:eee:rensus:v:185:y:2023:i:c:s1364032123004860
    DOI: 10.1016/j.rser.2023.113629
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123004860
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.113629?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bilgili, Levent, 2021. "Comparative assessment of alternative marine fuels in life cycle perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    2. Perčić, Maja & Vladimir, Nikola & Jovanović, Ivana & Koričan, Marija, 2022. "Application of fuel cells with zero-carbon fuels in short-sea shipping," Applied Energy, Elsevier, vol. 309(C).
    3. Mehmeti, Andi & McPhail, Stephen J. & Ulgiati, Sergio, 2018. "Life cycle inventory data and metrics for high-temperature fuel cells: A streamlined decision-support tool and case study application," Energy, Elsevier, vol. 159(C), pages 1195-1205.
    4. Fan, Ailong & Wang, Junteng & He, Yapeng & Perčić, Maja & Vladimir, Nikola & Yang, Liu, 2021. "Decarbonising inland ship power system: Alternative solution and assessment method," Energy, Elsevier, vol. 226(C).
    5. Korberg, A.D. & Brynolf, S. & Grahn, M. & Skov, I.R., 2021. "Techno-economic assessment of advanced fuels and propulsion systems in future fossil-free ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    6. Corinne Post & Riikka Sarala & Caroline Gatrell & John E. Prescott, 2020. "Advancing Theory with Review Articles," Journal of Management Studies, Wiley Blackwell, vol. 57(2), pages 351-376, March.
    7. Hassan El‐Houjeiri & Jean‐Christophe Monfort & Jessey Bouchard & Steven Przesmitzki, 2019. "Life Cycle Assessment of Greenhouse Gas Emissions from Marine Fuels: A Case Study of Saudi Crude Oil versus Natural Gas in Different Global Regions," Journal of Industrial Ecology, Yale University, vol. 23(2), pages 374-388, April.
    8. Fernández-Dacosta, Cora & Shen, Li & Schakel, Wouter & Ramirez, Andrea & Kramer, Gert Jan, 2019. "Potential and challenges of low-carbon energy options: Comparative assessment of alternative fuels for the transport sector," Applied Energy, Elsevier, vol. 236(C), pages 590-606.
    9. Scarlat, Nicolae & Prussi, Matteo & Padella, Monica, 2022. "Quantification of the carbon intensity of electricity produced and used in Europe," Applied Energy, Elsevier, vol. 305(C).
    10. Alessandra Zamagni & Paolo Masoni & Patrizia Buttol & Andrea Raggi & Roberto Buonamici, 2012. "Finding Life Cycle Assessment Research Direction with the Aid of Meta‐Analysis," Journal of Industrial Ecology, Yale University, vol. 16(s1), pages 39-52, April.
    11. Vincenzo Muteri & Maurizio Cellura & Domenico Curto & Vincenzo Franzitta & Sonia Longo & Marina Mistretta & Maria Laura Parisi, 2020. "Review on Life Cycle Assessment of Solar Photovoltaic Panels," Energies, MDPI, vol. 13(1), pages 1-38, January.
    12. Stropnik, R. & Sekavčnik, M. & Ferriz, A.M. & Mori, M., 2018. "Reducing environmental impacts of the ups system based on PEM fuel cell with circular economy," Energy, Elsevier, vol. 165(PB), pages 824-835.
    13. Abd Rashid, Ahmad Faiz & Yusoff, Sumiani, 2015. "A review of life cycle assessment method for building industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 244-248.
    14. Perčić, Maja & Vladimir, Nikola & Fan, Ailong, 2021. "Techno-economic assessment of alternative marine fuels for inland shipping in Croatia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    15. Bauer, Christian & Hofer, Johannes & Althaus, Hans-Jörg & Del Duce, Andrea & Simons, Andrew, 2015. "The environmental performance of current and future passenger vehicles: Life cycle assessment based on a novel scenario analysis framework," Applied Energy, Elsevier, vol. 157(C), pages 871-883.
    16. Khalid Al-Khori & Sami G. Al-Ghamdi & Samir Boulfrad & Muammer Koç, 2021. "Life Cycle Assessment for Integration of Solid Oxide Fuel Cells into Gas Processing Operations," Energies, MDPI, vol. 14(15), pages 1-19, August.
    17. Agostini, Alessandro & Belmonte, Nadia & Masala, Alessio & Hu, Jianjiang & Rizzi, Paola & Fichtner, Maximilian & Moretto, Pietro & Luetto, Carlo & Sgroi, Mauro & Baricco, Marcello, 2018. "Role of hydrogen tanks in the life cycle assessment of fuel cell-based auxiliary power units," Applied Energy, Elsevier, vol. 215(C), pages 1-12.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Charilaos Christodoulou Raftis & Thierry Vanelslander & Edwin van Hassel, 2023. "A Global Analysis of Emissions, Decarbonization, and Alternative Fuels in Inland Navigation—A Systematic Literature Review," Sustainability, MDPI, vol. 15(19), pages 1-20, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan, Xinping & He, Yapeng & Fan, Ailong, 2023. "Carbon footprint prediction considering the evolution of alternative fuels and cargo: A case study of Yangtze river ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    2. Ahmed, Shoaib & Li, Tie & Yi, Ping & Chen, Run, 2023. "Environmental impact assessment of green ammonia-powered very large tanker ship for decarbonized future shipping operations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    3. Perčić, Maja & Frković, Lovro & Pukšec, Tomislav & Ćosić, Boris & Li, Oi Lun & Vladimir, Nikola, 2022. "Life-cycle assessment and life-cycle cost assessment of power batteries for all-electric vessels for short-sea navigation," Energy, Elsevier, vol. 251(C).
    4. Desantes, J.M. & Novella, R. & Pla, B. & Lopez-Juarez, M., 2021. "Impact of fuel cell range extender powertrain design on greenhouse gases and NOX emissions in automotive applications," Applied Energy, Elsevier, vol. 302(C).
    5. Khaled M. A. Salim & Ruhanita Maelah & Hawa Hishamuddin & Amizawati Mohd Amir & Mohd Nizam Ab Rahman, 2022. "Two Decades of Life Cycle Sustainability Assessment of Solid Oxide Fuel Cells (SOFCs): A Review," Sustainability, MDPI, vol. 14(19), pages 1-18, September.
    6. Inal, Omer Berkehan & Charpentier, Jean-Frédéric & Deniz, Cengiz, 2022. "Hybrid power and propulsion systems for ships: Current status and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    7. Kevin Joseph Dillman & Áróra Árnadóttir & Jukka Heinonen & Michał Czepkiewicz & Brynhildur Davíðsdóttir, 2020. "Review and Meta-Analysis of EVs: Embodied Emissions and Environmental Breakeven," Sustainability, MDPI, vol. 12(22), pages 1-28, November.
    8. Annika Tampe & Kristina Höse & Uwe Götze, 2023. "Sustainability-Oriented Assessment of Fuel Cells—A Literature Review," Sustainability, MDPI, vol. 15(19), pages 1-33, September.
    9. Fan, Ailong & Xiong, Yuqi & Yang, Liu & Zhang, Haiying & He, Yapeng, 2023. "Carbon footprint model and low–carbon pathway of inland shipping based on micro–macro analysis," Energy, Elsevier, vol. 263(PE).
    10. Mukherjee, Agneev & Bruijnincx, Pieter & Junginger, Martin, 2023. "Techno-economic competitiveness of renewable fuel alternatives in the marine sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    11. Stropnik, R. & Sekavčnik, M. & Ferriz, A.M. & Mori, M., 2018. "Reducing environmental impacts of the ups system based on PEM fuel cell with circular economy," Energy, Elsevier, vol. 165(PB), pages 824-835.
    12. Bilgili, Levent, 2023. "A systematic review on the acceptance of alternative marine fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    13. Guo, Xiaoyan & He, Junliang & Yu, Hang & Liu, Mei, 2023. "Carbon peak simulation and peak pathway analysis for hub-and-spoke container intermodal network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 180(C).
    14. Wang, Chuang & Liu, Mingkun & Li, Zengqun & Xing, Ziwen & Shu, Yue, 2023. "Performance improvement of twin-screw air expander used in PEMFC systems by two-phase expansion," Energy, Elsevier, vol. 273(C).
    15. Desreveaux, A. & Bouscayrol, A. & Trigui, R. & Hittinger, E. & Castex, E. & Sirbu, G.M., 2023. "Accurate energy consumption for comparison of climate change impact of thermal and electric vehicles," Energy, Elsevier, vol. 268(C).
    16. Audoly, Richard & Vogt-Schilb, Adrien & Guivarch, Céline & Pfeiffer, Alexander, 2018. "Pathways toward zero-carbon electricity required for climate stabilization," Applied Energy, Elsevier, vol. 225(C), pages 884-901.
    17. Kim, Dongin & Han, Jeehoon, 2020. "Comprehensive analysis of two catalytic processes to produce formic acid from carbon dioxide," Applied Energy, Elsevier, vol. 264(C).
    18. Stephany Isabel Vallarta-Serrano & Ana Bricia Galindo-Muro & Riccardo Cespi & Rogelio Bustamante-Bello, 2023. "Analysis of GHG Emission from Cargo Vehicles in Megacities: The Case of the Metropolitan Zone of the Valley of Mexico," Energies, MDPI, vol. 16(13), pages 1-19, June.
    19. Nabavi-Pelesaraei, Ashkan & Azadi, Hossein & Van Passel, Steven & Saber, Zahra & Hosseini-Fashami, Fatemeh & Mostashari-Rad, Fatemeh & Ghasemi-Mobtaker, Hassan, 2021. "Prospects of solar systems in production chain of sunflower oil using cold press method with concentrating energy and life cycle assessment," Energy, Elsevier, vol. 223(C).
    20. Nadia Belmonte & Carlo Luetto & Stefano Staulo & Paola Rizzi & Marcello Baricco, 2017. "Case Studies of Energy Storage with Fuel Cells and Batteries for Stationary and Mobile Applications," Challenges, MDPI, vol. 8(1), pages 1-15, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:185:y:2023:i:c:s1364032123004860. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.