IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v184y2023ics1364032123004367.html
   My bibliography  Save this article

System dynamics prediction and development path optimization of regional carbon emissions: A case study of Tianjin

Author

Listed:
  • Li, Guohao
  • Chen, Xue
  • You, Xue-yi

Abstract

The prediction of regional carbon emissions and the optimization of development paths are particularly important. Regional heterogeneity leads to different links between carbon emissions and population, economy, industry, energy, environment, and other factors. However, most of the previous studies carried out the accounting, factor decomposition, prediction, and decision-making of regional carbon emissions alone, which failed to form the sustainable assessment of regional carbon emissions. Therefore, the carbon emissions coefficient, Logarithmic Mean Divisia Index, system dynamics model and Interlink Decision Making Index were selected in this study to establish the regional carbon emissions systems framework. In this study, a mega-city such as Tianjin was taken as an example, the comprehensive assessment and prediction of regional carbon emissions system was carried out. The results show the change in energy intensity had the strongest mitigation effect, reducing carbon emissions by 106.17 million tons in total, and the per capita GDP effect had the strongest promotion effect, with a cumulative contribution of 265.19 million tons of carbon emissions. Among all 13 scenarios in Tianjin, Scenario-12 is identified as the optimal development path and provides policy suggestions. The results of this study not only verify the effectiveness and necessity of the framework, but also provide guidance tools for regional carbon emissions development. The results of this study validate the effectiveness and necessity of the framework to provide guidance for the regional carbon emissions development path. The results of the case also provide help for the optimization of Tianjin's carbon emissions development path.

Suggested Citation

  • Li, Guohao & Chen, Xue & You, Xue-yi, 2023. "System dynamics prediction and development path optimization of regional carbon emissions: A case study of Tianjin," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
  • Handle: RePEc:eee:rensus:v:184:y:2023:i:c:s1364032123004367
    DOI: 10.1016/j.rser.2023.113579
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123004367
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.113579?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fang, Kai & Tang, Yiqi & Zhang, Qifeng & Song, Junnian & Wen, Qi & Sun, Huaping & Ji, Chenyang & Xu, Anqi, 2019. "Will China peak its energy-related carbon emissions by 2030? Lessons from 30 Chinese provinces," Applied Energy, Elsevier, vol. 255(C).
    2. Dinga, Christian Doh & Wen, Zongguo, 2022. "China's green deal: Can China's cement industry achieve carbon neutral emissions by 2060?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    3. Robert G. King & Ross Levine, 1993. "Finance and Growth: Schumpeter Might Be Right," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 108(3), pages 717-737.
    4. Zhifu Mi & Jing Meng & Dabo Guan & Yuli Shan & Malin Song & Yi-Ming Wei & Zhu Liu & Klaus Hubacek, 2017. "Chinese CO2 emission flows have reversed since the global financial crisis," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
    5. Kohli, Ulrich, 2004. "Real GDP, real domestic income, and terms-of-trade changes," Journal of International Economics, Elsevier, vol. 62(1), pages 83-106, January.
    6. Wang, Zhaojing & Jiang, Qingzhe & Dong, Kangyin & Mubarik, Muhammad Shujaat & Dong, Xiucheng, 2020. "Decomposition of the US CO2 emissions and its mitigation potential: An aggregate and sectoral analysis," Energy Policy, Elsevier, vol. 147(C).
    7. Feng, Y.Y. & Chen, S.Q. & Zhang, L.X., 2013. "System dynamics modeling for urban energy consumption and CO2 emissions: A case study of Beijing, China," Ecological Modelling, Elsevier, vol. 252(C), pages 44-52.
    8. Ang, B. W., 2005. "The LMDI approach to decomposition analysis: a practical guide," Energy Policy, Elsevier, vol. 33(7), pages 867-871, May.
    9. Cheng, Zhonghua & Li, Lianshui & Liu, Jun & Zhang, Huiming, 2018. "Total-factor carbon emission efficiency of China's provincial industrial sector and its dynamic evolution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 330-339.
    10. Li, Dezhi & Huang, Guanying & Zhu, Shiyao & Chen, Long & Wang, Jiangbo, 2021. "How to peak carbon emissions of provincial construction industry? Scenario analysis of Jiangsu Province," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    11. Xu, Guangyue & Schwarz, Peter & Yang, Hualiu, 2020. "Adjusting energy consumption structure to achieve China's CO2 emissions peak," Renewable and Sustainable Energy Reviews, Elsevier, vol. 122(C).
    12. Stephen Crooks & Ariana E. Sutton-Grier & Tiffany G. Troxler & Nathaniel Herold & Blanca Bernal & Lisa Schile-Beers & Tom Wirth, 2018. "Coastal wetland management as a contribution to the US National Greenhouse Gas Inventory," Nature Climate Change, Nature, vol. 8(12), pages 1109-1112, December.
    13. Ruijing Zheng & Yu Cheng & Haimeng Liu & Wei Chen & Xiaodong Chen & Yaping Wang, 2022. "The Spatiotemporal Distribution and Drivers of Urban Carbon Emission Efficiency: The Role of Technological Innovation," IJERPH, MDPI, vol. 19(15), pages 1-22, July.
    14. Shi, Huiting & Chai, Jian & Lu, Quanying & Zheng, Jiali & Wang, Shouyang, 2022. "The impact of China's low-carbon transition on economy, society and energy in 2030 based on CO2 emissions drivers," Energy, Elsevier, vol. 239(PD).
    15. Khanali, Majid & Ghasemi-Mobtaker, Hassan & Varmazyar, Hossein & Mohammadkashi, Naghmeh & Chau, Kwok-wing & Nabavi-Pelesaraei, Ashkan, 2022. "Applying novel eco-exergoenvironmental toxicity index to select the best irrigation system of sunflower production," Energy, Elsevier, vol. 250(C).
    16. Decai Tang & Tingyu Ma & Zhijiang Li & Jiexin Tang & Brandon J. Bethel, 2016. "Trend Prediction and Decomposed Driving Factors of Carbon Emissions in Jiangsu Province during 2015–2020," Sustainability, MDPI, vol. 8(10), pages 1-15, October.
    17. Sen, Parag & Roy, Mousumi & Pal, Parimal, 2016. "Application of ARIMA for forecasting energy consumption and GHG emission: A case study of an Indian pig iron manufacturing organization," Energy, Elsevier, vol. 116(P1), pages 1031-1038.
    18. Meng, Ming & Niu, Dongxiao, 2011. "Modeling CO2 emissions from fossil fuel combustion using the logistic equation," Energy, Elsevier, vol. 36(5), pages 3355-3359.
    19. Dong, Feng & Li, Xiaohui & Long, Ruyin & Liu, Xiaoyan, 2013. "Regional carbon emission performance in China according to a stochastic frontier model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 525-530.
    20. Pohekar, S. D. & Ramachandran, M., 2004. "Application of multi-criteria decision making to sustainable energy planning--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(4), pages 365-381, August.
    21. Koo, Choongwan & Hong, Taehoon & Kim, Jimin & Kim, Hyunjoong, 2015. "An integrated multi-objective optimization model for establishing the low-carbon scenario 2020 to achieve the national carbon emissions reduction target for residential buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 410-425.
    22. Ye, Bin & Jiang, JingJing & Li, Changsheng & Miao, Lixin & Tang, Jie, 2017. "Quantification and driving force analysis of provincial-level carbon emissions in China," Applied Energy, Elsevier, vol. 198(C), pages 223-238.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ming Meng & Manyu Li, 2020. "Decomposition Analysis and Trend Prediction of CO 2 Emissions in China’s Transportation Industry," Sustainability, MDPI, vol. 12(7), pages 1-20, March.
    2. Cai, Bofeng & Guo, Huanxiu & Ma, Zipeng & Wang, Zhixuan & Dhakal, Shobhakar & Cao, Libin, 2019. "Benchmarking carbon emissions efficiency in Chinese cities: A comparative study based on high-resolution gridded data," Applied Energy, Elsevier, vol. 242(C), pages 994-1009.
    3. Feng Dong & Jingyun Li & Yue-Jun Zhang & Ying Wang, 2018. "Drivers Analysis of CO 2 Emissions from the Perspective of Carbon Density: The Case of Shandong Province, China," IJERPH, MDPI, vol. 15(8), pages 1-24, August.
    4. Ying Wang & Peipei Shang & Lichun He & Yingchun Zhang & Dandan Liu, 2018. "Can China Achieve the 2020 and 2030 Carbon Intensity Targets through Energy Structure Adjustment?," Energies, MDPI, vol. 11(10), pages 1-32, October.
    5. Wen, Hong-xing & Chen, Zhe & Yang, Qian & Liu, Jin-yi & Nie, Pu-yan, 2022. "Driving forces and mitigating strategies of CO2 emissions in China: A decomposition analysis based on 38 industrial sub-sectors," Energy, Elsevier, vol. 245(C).
    6. Shi, Changfeng & Zhi, Jiaqi & Yao, Xiao & Zhang, Hong & Yu, Yue & Zeng, Qingshun & Li, Luji & Zhang, Yuxi, 2023. "How can China achieve the 2030 carbon peak goal—a crossover analysis based on low-carbon economics and deep learning," Energy, Elsevier, vol. 269(C).
    7. Yang, Yi & Qin, Huan, 2024. "The uncertainties of the carbon peak and the temporal and regional heterogeneity of its driving factors in China," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
    8. Huo, Tengfei & Ma, Yuling & Xu, Linbo & Feng, Wei & Cai, Weiguang, 2022. "Carbon emissions in China's urban residential building sector through 2060: A dynamic scenario simulation," Energy, Elsevier, vol. 254(PA).
    9. Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Peak of CO2 emissions in various sectors and provinces of China: Recent progress and avenues for further research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 813-833.
    10. Li, Dezhi & Huang, Guanying & Zhu, Shiyao & Chen, Long & Wang, Jiangbo, 2021. "How to peak carbon emissions of provincial construction industry? Scenario analysis of Jiangsu Province," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    11. Wang, Changjian & Miao, Zhuang & Chen, Xiaodong & Cheng, Yu, 2021. "Factors affecting changes of greenhouse gas emissions in Belt and Road countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    12. Xian’En Wang & Shimeng Wang & Xipan Wang & Wenbo Li & Junnian Song & Haiyan Duan & Shuo Wang, 2019. "The Assessment of Carbon Performance under the Region-Sector Perspective based on the Nonparametric Estimation: A Case Study of the Northern Province in China," Sustainability, MDPI, vol. 11(21), pages 1-23, October.
    13. Lu, Guanyu & Sugino, Makoto & Arimura, Toshi H. & Horie, Tetsuya, 2022. "Success and failure of the voluntary action plan: Disaggregated sector decomposition analysis of energy-related CO2 emissions in Japan," Energy Policy, Elsevier, vol. 163(C).
    14. Ma, Xuejiao & Jiang, Ping & Jiang, Qichuan, 2020. "Research and application of association rule algorithm and an optimized grey model in carbon emissions forecasting," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
    15. Li, Rui & Liu, Qiqi & Cai, Weiguang & Liu, Yuan & Yu, Yanhui & Zhang, Yihao, 2023. "Echelon peaking path of China's provincial building carbon emissions: Considering peak and time constraints," Energy, Elsevier, vol. 271(C).
    16. Perry Sadorsky, 2020. "Energy Related CO 2 Emissions before and after the Financial Crisis," Sustainability, MDPI, vol. 12(9), pages 1-22, May.
    17. Wang, Miao & Feng, Chao, 2021. "The consequences of industrial restructuring, regional balanced development, and market-oriented reform for China's carbon dioxide emissions: A multi-tier meta-frontier DEA-based decomposition analysi," Technological Forecasting and Social Change, Elsevier, vol. 164(C).
    18. Ma, Y. & Li, Y.P. & Mei, H. & Nie, S. & Huang, G.H. & Li, Y.F. & Suo, C., 2024. "Potential way to plan China's power system (2021–2050) for climate change mitigation," Renewable Energy, Elsevier, vol. 225(C).
    19. Wang, Geng & Feng, Yan, 2024. "Analysis of carbon emission drivers and peak carbon forecasts for island economies," Ecological Modelling, Elsevier, vol. 489(C).
    20. Nuhu, Peter & Bukari, Dramani & Sulemana, Yusif, 2023. "A decomposition analysis of the nexus between employment and credit in West Africa’s biggest economies," MPRA Paper 118345, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:184:y:2023:i:c:s1364032123004367. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.