IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v491y2024ics0304380024000826.html
   My bibliography  Save this article

Amount of carbon fixed, transit time and fate of harvested wood products define the climate change mitigation potential of boreal forest management—A model analysis

Author

Listed:
  • Metzler, Holger
  • Launiainen, Samuli
  • Vico, Giulia

Abstract

Boreal forests are often managed to maximize wood production, but other goals, among which climate change mitigation, are increasingly important. Hence, it is necessary to examine synergies and trade-offs between forest production and its potential for carbon sequestration and climate change mitigation in forest stands. To this aim, we develop a novel mass-balanced process-based compartmental model that allows following the carbon path from its photosynthetic fixation until its return to the atmosphere by autotrophic or heterotrophic respiration, or by being burnt as wood product. Following carbon in the system allows to account for how long forest ecosystems and wood products retain carbon away from the atmosphere (i.e., the carbon transit time). As example, we apply the model to four management scenarios, i.e., mixed-aged pine, even-aged pine, even-aged spruce, and even-aged mixed forest, and contrast metrics of performance relative to wood production, carbon sequestration, and climate change mitigation potential. While at the end of an 80 yr rotation the even-aged forests held up to 31% more carbon than the mixed-aged forest, the mixed-aged forest was superior during almost the entire rotation when factoring in the carbon retention time away from the atmosphere, i.e., in terms of climate change mitigation potential. Importantly, scenarios that maximize production or amount of carbon stored in the ecosystems are not necessarily the most beneficial for carbon retention away from the atmosphere. These results underline the importance of considering carbon transit time when evaluating forest management options for potential climate change mitigation.

Suggested Citation

  • Metzler, Holger & Launiainen, Samuli & Vico, Giulia, 2024. "Amount of carbon fixed, transit time and fate of harvested wood products define the climate change mitigation potential of boreal forest management—A model analysis," Ecological Modelling, Elsevier, vol. 491(C).
  • Handle: RePEc:eee:ecomod:v:491:y:2024:i:c:s0304380024000826
    DOI: 10.1016/j.ecolmodel.2024.110694
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380024000826
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2024.110694?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rasmus Astrup & Pierre Y. Bernier & Hélène Genet & David A. Lutz & Ryan M. Bright, 2018. "A sensible climate solution for the boreal forest," Nature Climate Change, Nature, vol. 8(1), pages 11-12, January.
    2. Launiainen, Samuli & Katul, Gabriel G. & Lauren, Ari & Kolari, Pasi, 2015. "Coupling boreal forest CO2, H2O and energy flows by a vertically structured forest canopy – Soil model with separate bryophyte layer," Ecological Modelling, Elsevier, vol. 312(C), pages 385-405.
    3. Hurmekoski, Elias & Kunttu, Janni & Heinonen, Tero & Pukkala, Timo & Peltola, Heli, 2023. "Does expanding wood use in construction and textile markets contribute to climate change mitigation?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carlos E. Villarreal-Olavarrieta & Néstor García-Chan & Miguel E. Vázquez-Méndez, 2021. "Simulation of Heat and Water Transport on Different Tree Canopies: A Finite Element Approach," Mathematics, MDPI, vol. 9(19), pages 1-20, September.
    2. Chen, Si & Shahi, Chander & Chen, Han Y.H. & Kumar, Praveen & Ma, Zilong & McLaren, Brian, 2018. "Trade-offs and Synergies Between Economic Gains and Plant Diversity Across a Range of Management Alternatives in Boreal Forests," Ecological Economics, Elsevier, vol. 151(C), pages 162-172.
    3. Vincent Egenolf & Gibran Vita & Martin Distelkamp & Franziska Schier & Rebekka Hüfner & Stefan Bringezu, 2021. "The Timber Footprint of the German Bioeconomy—State of the Art and Past Development," Sustainability, MDPI, vol. 13(7), pages 1-19, April.
    4. Hetemäki, L. & D'Amato, D. & Giurca, A. & Hurmekoski, E., 2024. "Synergies and trade-offs in the European forest bioeconomy research: State of the art and the way forward," Forest Policy and Economics, Elsevier, vol. 163(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:491:y:2024:i:c:s0304380024000826. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.