IDEAS home Printed from https://ideas.repec.org/a/eee/ecoser/v45y2020ics2212041620300929.html
   My bibliography  Save this article

Long-term impacts of increased timber harvests on ecosystem services and biodiversity: A scenario study based on national forest inventory data

Author

Listed:
  • Blattert, Clemens
  • Lemm, Renato
  • Thürig, Esther
  • Stadelmann, Golo
  • Brändli, Urs-Beat
  • Temperli, Christian

Abstract

The transition to a climate-neutral economy is expected to increase future timber demands and endanger the multifunctionality of forests. National scenario analyses are needed to determine long-term forest management impacts and support forest policy making in defining guidelines for the sustainable provision of forests’ ecosystem services and biodiversity (ESB). Using national forestry inventory data, the forest management model MASSIMO and a model to estimate harvesting costs, we simulated forest development in Switzerland under five politically relevant timber harvesting scenarios until 2106 (business as usual and four increased timber mobilisation scenarios). Model results were analysed using a utility-based multi-criteria approach regarding timber production, protection against gravitational hazards, carbon sequestration and biodiversity conservation for the whole of Switzerland and for five sub-regions. The development of ESB benefits over time and existing trade-offs were analysed. Apart from the Plateau region, the business-as-usual scenario resulted in the highest overall ESB benefits. However, this scenario did not mobilise possible timber potentials, which is not in line with current forest policies. In the Plateau region, ESB benefited most under a constant growing stock scenario that guaranteed long-term sustainable timber usage. Nevertheless, both scenarios showed strong trade-offs between biodiversity conservation and the service carbon sequestration. The latter was achieved best under a scenario with conifer promotion and increased harvested timber volumes that can be used for long-living timber products and substitution of energy intensive materials and fossil fuels. Even though weighting the ESB according to regional management priorities further increased the trade-off situation, it also increased the overall benefits of harvesting scenarios, except for in mountainous regions. We conclude that no single scenario can maximize all ESB benefits simultaneously. A combination of locally adapted scenarios with targeted priorities can guarantee a higher degree of multifunctionality and long-term timber supply, but at the cost of locally more accentuated trade-offs. Overall, our study provides new insights into ESB interactions, and the presented multi-criteria framework and results provide a valuable basis to support forest policy decision making in Switzerland and beyond.

Suggested Citation

  • Blattert, Clemens & Lemm, Renato & Thürig, Esther & Stadelmann, Golo & Brändli, Urs-Beat & Temperli, Christian, 2020. "Long-term impacts of increased timber harvests on ecosystem services and biodiversity: A scenario study based on national forest inventory data," Ecosystem Services, Elsevier, vol. 45(C).
  • Handle: RePEc:eee:ecoser:v:45:y:2020:i:c:s2212041620300929
    DOI: 10.1016/j.ecoser.2020.101150
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S2212041620300929
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecoser.2020.101150?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hoogstra-Klein, Marjanke A. & Hengeveld, Geerten M. & de Jong, Rutger, 2017. "Analysing scenario approaches for forest management — One decade of experiences in Europe," Forest Policy and Economics, Elsevier, vol. 85(P2), pages 222-234.
    2. Marc Hanewinkel & Dominik A. Cullmann & Mart-Jan Schelhaas & Gert-Jan Nabuurs & Niklaus E. Zimmermann, 2013. "Climate change may cause severe loss in the economic value of European forest land," Nature Climate Change, Nature, vol. 3(3), pages 203-207, March.
    3. María R. Felipe-Lucia & Santiago Soliveres & Caterina Penone & Peter Manning & Fons van der Plas & Steffen Boch & Daniel Prati & Christian Ammer & Peter Schall & Martin M. Gossner & Jürgen Bauhus & Fr, 2018. "Multiple forest attributes underpin the supply of multiple ecosystem services," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    4. Valentin Bellassen & Sebastiaan Luyssaert, 2014. "Carbon sequestration: Managing forests in uncertain times," Nature, Nature, vol. 506(7487), pages 153-155, February.
    5. Langner, Alexandra & Irauschek, Florian & Perez, Susana & Pardos, Marta & Zlatanov, Tzvetan & Öhman, Karin & Nordström, Eva-Maria & Lexer, Manfred J., 2017. "Value-based ecosystem service trade-offs in multi-objective management in European mountain forests," Ecosystem Services, Elsevier, vol. 26(PA), pages 245-257.
    6. Zanchi, Giuliana & Belyazid, Salim & Akselsson, Cecilia & Yu, Lin, 2014. "Modelling the effects of management intensification on multiple forest services: a Swedish case study," Ecological Modelling, Elsevier, vol. 284(C), pages 48-59.
    7. Olander, Lydia & Polasky, Stephen & Kagan, James S. & Johnston, Robert J. & Wainger, Lisa & Saah, David & Maguire, Lynn & Boyd, James & Yoskowitz, David, 2017. "So you want your research to be relevant? Building the bridge between ecosystem services research and practice," Ecosystem Services, Elsevier, vol. 26(PA), pages 170-182.
    8. Ananda, Jayanath & Herath, Gamini, 2009. "A critical review of multi-criteria decision making methods with special reference to forest management and planning," Ecological Economics, Elsevier, vol. 68(10), pages 2535-2548, August.
    9. Rupert Seidl & Dominik Thom & Markus Kautz & Dario Martin-Benito & Mikko Peltoniemi & Giorgio Vacchiano & Jan Wild & Davide Ascoli & Michal Petr & Juha Honkaniemi & Manfred J. Lexer & Volodymyr Trotsi, 2017. "Forest disturbances under climate change," Nature Climate Change, Nature, vol. 7(6), pages 395-402, June.
    10. Lagergren, Fredrik & Jönsson, Anna Maria, 2017. "Ecosystem model analysis of multi-use forestry in a changing climate," Ecosystem Services, Elsevier, vol. 26(PA), pages 209-224.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juutinen, Artti & Kurttila, Mikko & Pohjanmies, Tähti & Tolvanen, Anne & Kuhlmey, Katharina & Skudnik, Mitja & Triplat, Matevž & Westin, Kerstin & Mäkipää, Raisa, 2021. "Forest owners' preferences for contract-based management to enhance environmental values versus timber production," Forest Policy and Economics, Elsevier, vol. 132(C).
    2. Hallberg-Sramek, Isabella & Nordström, Eva-Maria & Priebe, Janina & Reimerson, Elsa & Mårald, Erland & Nordin, Annika, 2023. "Combining scientific and local knowledge improves evaluating future scenarios of forest ecosystem services," Ecosystem Services, Elsevier, vol. 60(C).
    3. Vergarechea, M. & Astrup, R. & Fischer, C. & Øistad, K. & Blattert, C. & Hartikainen, M. & Eyvindson, K. & Di Fulvio, F. & Forsell, N. & Burgas, D. & Toraño-Caicoya, A. & Mönkkönen, M. & Antón-Fernánd, 2023. "Future wood demands and ecosystem services trade-offs: A policy analysis in Norway," Forest Policy and Economics, Elsevier, vol. 147(C).
    4. Toraño Caicoya, Astor & Vergarechea, Marta & Blattert, Clemens & Klein, Julian & Eyvindson, Kyle & Burgas, Daniel & Snäll, Tord & Mönkkönen, Mikko & Astrup, Rasmus & Di Fulvio, Fulvio & Forsell, Nikla, 2023. "What drives forest multifunctionality in central and northern Europe? Exploring the interplay of management, climate, and policies," Ecosystem Services, Elsevier, vol. 64(C).
    5. Hurmekoski, Elias & Kunttu, Janni & Heinonen, Tero & Pukkala, Timo & Peltola, Heli, 2023. "Does expanding wood use in construction and textile markets contribute to climate change mitigation?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    6. Lessa Derci Augustynczik, Andrey & Yousefpour, Rasoul, 2021. "Assessing the synergistic value of ecosystem services in European beech forests," Ecosystem Services, Elsevier, vol. 49(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hallberg-Sramek, Isabella & Nordström, Eva-Maria & Priebe, Janina & Reimerson, Elsa & Mårald, Erland & Nordin, Annika, 2023. "Combining scientific and local knowledge improves evaluating future scenarios of forest ecosystem services," Ecosystem Services, Elsevier, vol. 60(C).
    2. Orsi, Francesco & Ciolli, Marco & Primmer, Eeva & Varumo, Liisa & Geneletti, Davide, 2020. "Mapping hotspots and bundles of forest ecosystem services across the European Union," Land Use Policy, Elsevier, vol. 99(C).
    3. Dymond, Caren Christine & Giles-Hansen, Krysta & Asante, Patrick, 2020. "The forest mitigation-adaptation nexus: Economic benefits of novel planting regimes," Forest Policy and Economics, Elsevier, vol. 113(C).
    4. Toraño Caicoya, Astor & Vergarechea, Marta & Blattert, Clemens & Klein, Julian & Eyvindson, Kyle & Burgas, Daniel & Snäll, Tord & Mönkkönen, Mikko & Astrup, Rasmus & Di Fulvio, Fulvio & Forsell, Nikla, 2023. "What drives forest multifunctionality in central and northern Europe? Exploring the interplay of management, climate, and policies," Ecosystem Services, Elsevier, vol. 64(C).
    5. Juutinen, Artti & Haeler, Elena & Jandl, Robert & Kuhlmey, Katharina & Kurttila, Mikko & Mäkipää, Raisa & Pohjanmies, Tähti & Rosenkranz, Lydia & Skudnik, Mitja & Triplat, Matevž & Tolvanen, Anne & Vi, 2022. "Common preferences of European small-scale forest owners towards contract-based management," Forest Policy and Economics, Elsevier, vol. 144(C).
    6. Zanchi, Giuliana & Brady, Mark V., 2019. "Evaluating the contribution of forest ecosystem services to societal welfare through linking dynamic ecosystem modelling with economic valuation," Ecosystem Services, Elsevier, vol. 39(C).
    7. Augustynczik, Andrey Lessa Derci & Gutsch, Martin & Basile, Marco & Suckow, Felicitas & Lasch, Petra & Yousefpour, Rasoul & Hanewinkel, Marc, 2020. "Socially optimal forest management and biodiversity conservation in temperate forests under climate change," Ecological Economics, Elsevier, vol. 169(C).
    8. Roitsch, Dennis & Abruscato, Silvia & Lovrić, Marko & Lindner, Marcus & Orazio, Christophe & Winkel, Georg, 2023. "Close-to-nature forestry and intensive forestry – Two response patterns of forestry professionals towards climate change adaptation," Forest Policy and Economics, Elsevier, vol. 154(C).
    9. Hengst-Ehrhart, Yvonne & Schraml, Ulrich, 2020. "Back to the Forest’s future: Guiding principles of German forest stakeholders and their impact on the forestry sector," Land Use Policy, Elsevier, vol. 94(C).
    10. Morán-Ordóñez, Alejandra & Ameztegui, Aitor & De Cáceres, Miquel & de-Miguel, Sergio & Lefèvre, François & Brotons, Lluís & Coll, Lluís, 2020. "Future trade-offs and synergies among ecosystem services in Mediterranean forests under global change scenarios," Ecosystem Services, Elsevier, vol. 45(C).
    11. Corrado Battisti, 2018. "Preparing students for the operational environmental career: an integrated project-based road map for academic programs," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 8(4), pages 573-583, December.
    12. Alessio D’Auria & Pasquale De Toro & Nicola Fierro & Elisa Montone, 2018. "Integration between GIS and Multi-Criteria Analysis for Ecosystem Services Assessment: A Methodological Proposal for the National Park of Cilento, Vallo di Diano and Alburni (Italy)," Sustainability, MDPI, vol. 10(9), pages 1-25, September.
    13. Regina Márcia Longo & Alessandra Leite da Silva & Admilson Irio Ribeiro & Raissa Caroline Gomes & Fabricio Camillo Sperandio & Adélia N. Nunes, 2024. "Evaluating the Environmental Quality of Forest Remnants Using Landscape Metrics," Sustainability, MDPI, vol. 16(4), pages 1-19, February.
    14. Diyamandoglu, Vasil & Fortuna, Lorena M., 2015. "Deconstruction of wood-framed houses: Material recovery and environmental impact," Resources, Conservation & Recycling, Elsevier, vol. 100(C), pages 21-30.
    15. Rafael González-Val, 2021. "The Probability Distribution of Worldwide Forest Areas," Sustainability, MDPI, vol. 13(3), pages 1-19, January.
    16. Channa Suraweera & Martin Baláš & Josef Gallo & Giuseppe D'Andrea & Stanislav Vacek & Jiří Remeš, 2023. "Intensive initial care of silver fir using improving compounds: A way to support diverse forests?," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 69(5), pages 179-192.
    17. Susanne Neuner & Thomas Knoke, 2017. "Economic consequences of altered survival of mixed or pure Norway spruce under a dryer and warmer climate," Climatic Change, Springer, vol. 140(3), pages 519-531, February.
    18. Grilli, Gianluca & Fratini, Roberto & Marone, Enrico & Sacchelli, Sandro, 2020. "A spatial-based tool for the analysis of payments for forest ecosystem services related to hydrogeological protection," Forest Policy and Economics, Elsevier, vol. 111(C).
    19. Agudelo, César Augusto Ruiz & Bustos, Sandra Liliana Hurtado & Moreno, Carmen Alicia Parrado, 2020. "Modeling interactions among multiple ecosystem services. A critical review," Ecological Modelling, Elsevier, vol. 429(C).
    20. Sohngen, Brent & Tian, Xiaohui, 2016. "Global climate change impacts on forests and markets," Forest Policy and Economics, Elsevier, vol. 72(C), pages 18-26.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecoser:v:45:y:2020:i:c:s2212041620300929. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/ecosystem-services .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.