IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v11y2007i3p524-535.html
   My bibliography  Save this article

Combined cycle versus one thousand diesel power plants: pollutant emissions, ecological efficiency and economic analysis

Author

Listed:
  • Silveira, José Luz
  • de Carvalho, João Jr.
  • de Castro Villela, Iraídes Aparecida

Abstract

The increase in the use of natural gas in Brazil has stimulated public and private sectors to analyse the possibility of using combined cycle systems for generation of electrical energy. Gas turbine combined cycle power plants are becoming increasingly common due to their high efficiency, short lead times, and ability to meet environmental standards. Power is produced in a generator linked directly to the gas turbine. The gas turbine exhaust gases are sent to a heat recovery steam generator to produce superheated steam that can be used in a steam turbine to produce additional power. In this paper a comparative study between a 1000 MW combined cycle power plant and 1000Â kW diesel power plant is presented. In first step, the energetic situation in Brazil, the needs of the electric sector modification and the needs of demand management and integrated means planning are clarified. In another step the characteristics of large and small thermoelectric power plants that use natural gas and diesel fuel, respectively, are presented. The ecological efficiency levels of each type of power plant is considered in the discussion, presenting the emissions of particulate material, sulphur dioxide (SO2), carbon dioxide (CO2) and nitrogen oxides (NOx).

Suggested Citation

  • Silveira, José Luz & de Carvalho, João Jr. & de Castro Villela, Iraídes Aparecida, 2007. "Combined cycle versus one thousand diesel power plants: pollutant emissions, ecological efficiency and economic analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(3), pages 524-535, April.
  • Handle: RePEc:eee:rensus:v:11:y:2007:i:3:p:524-535
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364-0321(05)00043-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dincer, Ibrahim, 1999. "Environmental impacts of energy," Energy Policy, Elsevier, vol. 27(14), pages 845-854, December.
    2. Schaeffer, Roberto & Salem Szklo, Alexandre, 2001. "Future electric power technology choices of Brazil:: a possible conflict between local pollution and global climate change," Energy Policy, Elsevier, vol. 29(5), pages 355-369, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chatchawan Vongmahadlek & Boonsong Satayopas, 2010. "A Decision Support System to Design Operating Strategies of a Power Plant: Adequate Electricity Generation and Abated Emissions Release," Energy & Environment, , vol. 21(3), pages 267-278, July.
    2. Boloy, Ronney Arismel Mancebo & Silveira, Jose Luz & Tuna, Celso Eduardo & Coronado, Christian R. & Antunes, Julio Santana, 2011. "Ecological impacts from syngas burning in internal combustion engine: Technical and economic aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 5194-5201.
    3. de Souza, Sergio Alencar & Lamas, Wendell de Queiroz, 2014. "Thermoeconomic and ecological analysis applied to heating industrial process in chemical reactors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 96-107.
    4. Zvingilaite, Erika, 2011. "Human health-related externalities in energy system modelling the case of the Danish heat and power sector," Applied Energy, Elsevier, vol. 88(2), pages 535-544, February.
    5. Silveira, Jose Luz & Tuna, Celso Eduardo & Lamas, Wendell de Queiroz, 2013. "The need of subsidy for the implementation of photovoltaic solar energy as supporting of decentralized electrical power generation in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 133-141.
    6. Bass, Robert J. & Malalasekera, Weeratunge & Willmot, Peter & Versteeg, Henk K., 2011. "The impact of variable demand upon the performance of a combined cycle gas turbine (CCGT) power plant," Energy, Elsevier, vol. 36(4), pages 1956-1965.
    7. Silveira, Jose Luz & Lamas, Wendell de Queiroz & Tuna, Celso Eduardo & Villela, Iraides Aparecida de Castro & Miro, Laura Siso, 2012. "Ecological efficiency and thermoeconomic analysis of a cogeneration system at a hospital," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2894-2906.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Neupane, Deependra & Kafle, Sagar & Karki, Kaji Ram & Kim, Dae Hyun & Pradhan, Prajal, 2022. "Solar and wind energy potential assessment at provincial level in Nepal: Geospatial and economic analysis," Renewable Energy, Elsevier, vol. 181(C), pages 278-291.
    2. Yucesan, Melih & Kahraman, Gökhan, 2019. "Risk evaluation and prevention in hydropower plant operations: A model based on Pythagorean fuzzy AHP," Energy Policy, Elsevier, vol. 126(C), pages 343-351.
    3. Wang, Jiangjiang & Zhai, Zhiqiang (John) & Jing, Youyin & Zhang, Chunfa, 2010. "Optimization design of BCHP system to maximize to save energy and reduce environmental impact," Energy, Elsevier, vol. 35(8), pages 3388-3398.
    4. Islam, Aminul & Chan, Eng-Seng & Taufiq-Yap, Yun Hin & Mondal, Md. Alam Hossain & Moniruzzaman, M. & Mridha, Moniruzzaman, 2014. "Energy security in Bangladesh perspective—An assessment and implication," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 154-171.
    5. Hao, Xiaoli & Zhang, Guoqiang & Chen, Youming, 2007. "Role of BCHP in energy and environmental sustainable development and its prospects in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(8), pages 1827-1842, October.
    6. Fernando, Yudi & Hor, Wei Lin, 2017. "Impacts of energy management practices on energy efficiency and carbon emissions reduction: A survey of malaysian manufacturing firms," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 62-73.
    7. Ermis, K. & Midilli, A. & Dincer, I. & Rosen, M.A., 2007. "Artificial neural network analysis of world green energy use," Energy Policy, Elsevier, vol. 35(3), pages 1731-1743, March.
    8. Suberu, Mohammed Yekini & Mustafa, Mohd Wazir & Bashir, Nouruddeen & Muhamad, Nor Asiah & Mokhtar, Ahmad Safawi, 2013. "Power sector renewable energy integration for expanding access to electricity in sub-Saharan Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 630-642.
    9. Sagar Roy & Smruti Ragunath, 2018. "Emerging Membrane Technologies for Water and Energy Sustainability: Future Prospects, Constraints and Challenges," Energies, MDPI, vol. 11(11), pages 1-32, November.
    10. Nepal, Rabindra & Jamasb, Tooraj, 2012. "Reforming small electricity systems under political instability: The case of Nepal," Energy Policy, Elsevier, vol. 40(C), pages 242-251.
    11. Gabriele, Alberto, 2004. "Policy alternatives in reforming energy utilities in developing countries," Energy Policy, Elsevier, vol. 32(11), pages 1319-1337, July.
    12. Domenico Morrone & Rosamartina Schena & Danilo Conte & Candida Bussoli & Angeloantonio Russo, 2022. "Between saying and doing, in the end there is the cost of capital: Evidence from the energy sector," Business Strategy and the Environment, Wiley Blackwell, vol. 31(1), pages 390-402, January.
    13. Sanches-Pereira, Alessandro & Tudeschini, Luís Gustavo & Coelho, Suani Teixeira, 2016. "Evolution of the Brazilian residential carbon footprint based on direct energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 184-201.
    14. Kumar, Anil & Kim, Man-Hoe, 2016. "Thermohydraulic performance of rectangular ducts with different multiple V-rib roughness shapes: A comprehensive review and comparative study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 635-652.
    15. Evans, Annette & Strezov, Vladimir & Evans, Tim J., 2009. "Assessment of sustainability indicators for renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1082-1088, June.
    16. Shrestha, Ram M. & Marpaung, Charles O.P., 2006. "Integrated resource planning in the power sector and economy-wide changes in environmental emissions," Energy Policy, Elsevier, vol. 34(18), pages 3801-3811, December.
    17. Vito Albino & Azzurra Balice & Rosa Maria Dangelico, 2009. "Environmental strategies and green product development: an overview on sustainability‐driven companies," Business Strategy and the Environment, Wiley Blackwell, vol. 18(2), pages 83-96, February.
    18. Xiangzhi Bu & Wilson V.T. Dang & Jianming Wang & Qiu Liu, 2020. "Environmental Orientation, Green Supply Chain Management, and Firm Performance: Empirical Evidence from Chinese Small and Medium-Sized Enterprises," IJERPH, MDPI, vol. 17(4), pages 1-17, February.
    19. Andre Assis de Salles & Ana Beatriz Mendes Campanati, 2019. "The Relevance of Crude Oil Prices on Natural Gas Pricing Expectations: A Dynamic Model Based Empirical Study," International Journal of Energy Economics and Policy, Econjournals, vol. 9(5), pages 322-330.
    20. Sharma, Vanika & Haque, Mohammed H. & Aziz, Syed Mahfuzul, 2019. "Energy cost minimization for net zero energy homes through optimal sizing of battery storage system," Renewable Energy, Elsevier, vol. 141(C), pages 278-286.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:11:y:2007:i:3:p:524-535. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.