IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v9y2020i3p32-d332189.html
   My bibliography  Save this article

A Review of Life Cycle Assessment Studies of Electric Vehicles with a Focus on Resource Use

Author

Listed:
  • Iulia Dolganova

    (Technische Universität Berlin, Chair of Sustainable Engineering, Strasse des 17. Juni 135, 10623 Berlin, Germany)

  • Anne Rödl

    (Technische Universität Hamburg, Institute of Environmental Technology and Energy Economics, Eissendorfer Strasse 40, 21073 Hamburg, Germany)

  • Vanessa Bach

    (Technische Universität Berlin, Chair of Sustainable Engineering, Strasse des 17. Juni 135, 10623 Berlin, Germany)

  • Martin Kaltschmitt

    (Technische Universität Hamburg, Institute of Environmental Technology and Energy Economics, Eissendorfer Strasse 40, 21073 Hamburg, Germany)

  • Matthias Finkbeiner

    (Technische Universität Berlin, Chair of Sustainable Engineering, Strasse des 17. Juni 135, 10623 Berlin, Germany)

Abstract

Changes in the mobility patterns have evoked concerns about the future availability of certain raw materials necessary to produce alternative drivetrains and related batteries. The goal of this article is to determine if resource use aspects are adequately reflected within life cycle assessment (LCA) case studies of electric vehicles (EV). Overall, 103 LCA studies on electric vehicles from 2009 to 2018 are evaluated regarding their objective, scope, considered impact categories, and assessment methods—with a focus on resource depletion and criticality. The performed analysis shows that only 24 out of 76 EV LCA and 10 out of 27 battery LCA address the issue of resources. The majority of the studies apply one of these methods: CML-IA, ReCiPe, or Eco-Indicator 99. In most studies, EV show higher results for mineral and metal resource depletion than internal combustion engine vehicles (ICEV). The batteries analysis shows that lithium, manganese, copper, and nickel are responsible for the highest burdens. Only few publications approach resource criticality. Although this topic is a serious concern for future mobility, it is currently not comprehensively and consistently considered within LCA studies of electric vehicles. Criticality should be included in the analyses in order to derive results on the potential risks associated with certain resources.

Suggested Citation

  • Iulia Dolganova & Anne Rödl & Vanessa Bach & Martin Kaltschmitt & Matthias Finkbeiner, 2020. "A Review of Life Cycle Assessment Studies of Electric Vehicles with a Focus on Resource Use," Resources, MDPI, vol. 9(3), pages 1-20, March.
  • Handle: RePEc:gam:jresou:v:9:y:2020:i:3:p:32-:d:332189
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/9/3/32/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/9/3/32/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Saleem H. Ali & Damien Giurco & Nicholas Arndt & Edmund Nickless & Graham Brown & Alecos Demetriades & Ray Durrheim & Maria Amélia Enriquez & Judith Kinnaird & Anna Littleboy & Lawrence D. Meinert & R, 2017. "Mineral supply for sustainable development requires resource governance," Nature, Nature, vol. 543(7645), pages 367-372, March.
    2. Lauran Van Oers & Jeroen Guinée, 2016. "The Abiotic Depletion Potential: Background, Updates, and Future," Resources, MDPI, vol. 5(1), pages 1-12, March.
    3. Bartolozzi, I. & Rizzi, F. & Frey, M., 2013. "Comparison between hydrogen and electric vehicles by life cycle assessment: A case study in Tuscany, Italy," Applied Energy, Elsevier, vol. 101(C), pages 103-111.
    4. Jens F. Peters & Marcel Weil, 2016. "A Critical Assessment of the Resource Depletion Potential of Current and Future Lithium-Ion Batteries," Resources, MDPI, vol. 5(4), pages 1-15, December.
    5. Paul W. Gruber & Pablo A. Medina & Gregory A. Keoleian & Stephen E. Kesler & Mark P. Everson & Timothy J. Wallington, 2011. "Global Lithium Availability," Journal of Industrial Ecology, Yale University, vol. 15(5), pages 760-775, October.
    6. Grandell, Leena & Lehtilä, Antti & Kivinen, Mari & Koljonen, Tiina & Kihlman, Susanna & Lauri, Laura S., 2016. "Role of critical metals in the future markets of clean energy technologies," Renewable Energy, Elsevier, vol. 95(C), pages 53-62.
    7. McManus, M.C., 2012. "Environmental consequences of the use of batteries in low carbon systems: The impact of battery production," Applied Energy, Elsevier, vol. 93(C), pages 288-295.
    8. Biresselioglu, Mehmet Efe & Demirbag Kaplan, Melike & Yilmaz, Barbara Katharina, 2018. "Electric mobility in Europe: A comprehensive review of motivators and barriers in decision making processes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 109(C), pages 1-13.
    9. Sanfélix, Javier & Messagie, Maarten & Omar, Noshin & Van Mierlo, Joeri & Hennige, Volker, 2015. "Environmental performance of advanced hybrid energy storage systems for electric vehicle applications," Applied Energy, Elsevier, vol. 137(C), pages 925-930.
    10. Saleem H. Ali & Damien Giurco & Nicholas Arndt & Edmund Nickless & Graham Brown & Alecos Demetriades & Ray Durrheim & Maria Amélia Enriquez & Judith Kinnaird & Anna Littleboy & Lawrence D. Meinert & R, 2017. "Correction: Corrigendum: Mineral supply for sustainable development requires resource governance," Nature, Nature, vol. 547(7662), pages 246-246, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Julia Pelzeter & Vanessa Bach & Martin Henßler & Klaus Ruhland & Matthias Finkbeiner, 2022. "Enhancement of the ESSENZ Method and Application in a Case Study on Batteries," Resources, MDPI, vol. 11(6), pages 1-25, May.
    2. Lucas Woodley & Chung Yi See & Peter Cook & Megan Yeo & Daniel S. Palmer & Laurena Huh & Seaver Wang & Ashley Nunes, 2024. "Climate impacts of critical mineral supply chain bottlenecks for electric vehicle deployment," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Miner, Patrick & Smith, Barbara M. & Jani, Anant & McNeill, Geraldine & Gathorne-Hardy, Alfred, 2024. "Car harm: A global review of automobility's harm to people and the environment," Journal of Transport Geography, Elsevier, vol. 115(C).
    4. Guzmán, Juan Ignacio & Karpunina, Alina & Araya, Constanza & Faúndez, Patricio & Bocchetto, Marcela & Camacho, Rodolfo & Desormeaux, Daniela & Galaz, Juanita & Garcés, Ingrid & Kracht, Willy & Lagos, , 2023. "Chile: On the road to global sustainable mining," Resources Policy, Elsevier, vol. 83(C).
    5. Picatoste, Aitor & Justel, Daniel & Mendoza, Joan Manuel F., 2022. "Circularity and life cycle environmental impact assessment of batteries for electric vehicles: Industrial challenges, best practices and research guidelines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    6. Dmitrii Zakharov & Alexey Fadyushin & Denis Chainikov, 2020. "Changes in the Environmental Sustainability of the Urban Transport System when Introducing Paid Parking for Private Vehicles," Resources, MDPI, vol. 9(9), pages 1-18, August.
    7. Iulia Dolganova & Vanessa Bach & Anne Rödl & Martin Kaltschmitt & Matthias Finkbeiner, 2022. "Assessment of Critical Resource Use in Aircraft Manufacturing," Circular Economy and Sustainability, Springer, vol. 2(3), pages 1193-1212, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liang, Yanan & Kleijn, René & Tukker, Arnold & van der Voet, Ester, 2022. "Material requirements for low-carbon energy technologies: A quantitative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    2. Le Boulzec, Hugo & Delannoy, Louis & Andrieu, Baptiste & Verzier, François & Vidal, Olivier & Mathy, Sandrine, 2022. "Dynamic modeling of global fossil fuel infrastructure and materials needs: Overcoming a lack of available data," Applied Energy, Elsevier, vol. 326(C).
    3. Matheus L. C. M. Henckens, 2022. "The Energy Transition and Energy Equity: A Compatible Combination?," Sustainability, MDPI, vol. 14(8), pages 1-22, April.
    4. Song, Yi & Zhang, Zhouyi & Zhang, Yijun & Cheng, Jinhua, 2022. "Technological innovation and supply of critical metals: A perspective of industrial chains," Resources Policy, Elsevier, vol. 79(C).
    5. Marc Schmid, 2021. "The Revised German Raw Materials Strategy in the Light of Global Political and Market Developments," Review of Policy Research, Policy Studies Organization, vol. 38(1), pages 49-75, January.
    6. Beibei Che & Chaofeng Shao & Zhirui Lu & Binghong Qian & Sihan Chen, 2022. "Mineral Requirements for China’s Energy Transition to 2060—Focus on Electricity and Transportation," Sustainability, MDPI, vol. 15(1), pages 1-23, December.
    7. Endl, Andreas & Tost, Michael & Hitch, Michael & Moser, Peter & Feiel, Susanne, 2021. "Europe's mining innovation trends and their contribution to the sustainable development goals: Blind spots and strong points," Resources Policy, Elsevier, vol. 74(C).
    8. Rivera, Nilza & Guzmán, Juan Ignacio & Jara, José Joaquín & Lagos, Gustavo, 2021. "Evaluation of econometric models of secondary refined copper supply," Resources Policy, Elsevier, vol. 73(C).
    9. Song, Huiling & Wang, Chang & Lei, Xiaojie & Zhang, Hongwei, 2022. "Dynamic dependence between main-byproduct metals and the role of clean energy market," Energy Economics, Elsevier, vol. 108(C).
    10. Marmiroli, Benedetta & Venditti, Mattia & Dotelli, Giovanni & Spessa, Ezio, 2020. "The transport of goods in the urban environment: A comparative life cycle assessment of electric, compressed natural gas and diesel light-duty vehicles," Applied Energy, Elsevier, vol. 260(C).
    11. Guzmán, Juan Ignacio & Karpunina, Alina & Araya, Constanza & Faúndez, Patricio & Bocchetto, Marcela & Camacho, Rodolfo & Desormeaux, Daniela & Galaz, Juanita & Garcés, Ingrid & Kracht, Willy & Lagos, , 2023. "Chile: On the road to global sustainable mining," Resources Policy, Elsevier, vol. 83(C).
    12. Tomer Fishman & Rupert J. Myers & Orlando Rios & T.E. Graedel, 2018. "Implications of Emerging Vehicle Technologies on Rare Earth Supply and Demand in the United States," Resources, MDPI, vol. 7(1), pages 1-15, January.
    13. Dino, Giovanna Antonella & Cavallo, Alessandro & Faraudello, Alessandra & Piercarlo, Rossi & Mancini, Susanna, 2021. "Raw materials supply: Kaolin and quartz from ore deposits and recycling activities. The example of the Monte Bracco area (Piedmont, Northern Italy)," Resources Policy, Elsevier, vol. 74(C).
    14. János Szanyi & Ladislaus Rybach & Hawkar A. Abdulhaq, 2023. "Geothermal Energy and Its Potential for Critical Metal Extraction—A Review," Energies, MDPI, vol. 16(20), pages 1-28, October.
    15. Zhong, Qiumeng & Zhang, Zhihe & Wang, Heming & Zhang, Xu & Wang, Yao & Wang, Peng & Ma, Fengmei & Yue, Qiang & Du, Tao & Chen, Wei-Qiang & Liang, Sai, 2023. "Incorporating scarcity into footprints reveals diverse supply chain hotspots for global fossil fuel management," Applied Energy, Elsevier, vol. 349(C).
    16. Alessandro Cavallo & Giovanna Antonella Dino, 2022. "Extractive Waste as a Resource: Quartz, Feldspars, and Rare Earth Elements from Gneiss Quarries of the Verbano-Cusio-Ossola Province (Piedmont, Northern Italy)," Sustainability, MDPI, vol. 14(8), pages 1-15, April.
    17. Dou Shiquan & Xu Deyi, 2023. "The security of critical mineral supply chains," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 36(3), pages 401-412, September.
    18. Zhang, Jintao & Su, Taoyong & Meng, Li, 2024. "Corporate earnings management strategy under environmental regulation: Evidence from China," International Review of Economics & Finance, Elsevier, vol. 90(C), pages 154-166.
    19. Margarita N. Ignatyeva & Vera V. Yurak & Alexey V. Dushin & Irina G. Polyanskaya, 2021. "Assessing challenges and threats for balanced subsoil use," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 17904-17922, December.
    20. Elisabeth Christen & Klaus S. Friesenbichler & Alexander Hudetz & Claudia Kettner-Marx & Ina Meyer & Franz Sinabell, 2021. "Außenhandel und nachhaltige Entwicklung in Österreich. Befunde auf der Grundlage von vorliegenden Quellen," WIFO Studies, WIFO, number 69290, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:9:y:2020:i:3:p:32-:d:332189. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.