IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i11p2864-d367415.html
   My bibliography  Save this article

Life Cycle Assessment of Electric Vehicle Batteries: An Overview of Recent Literature

Author

Listed:
  • Andrea Temporelli

    (Ricerca Sistema Energetico—RSE SpA, 20134 Milan, Italy)

  • Maria Leonor Carvalho

    (Ricerca Sistema Energetico—RSE SpA, 20134 Milan, Italy)

  • Pierpaolo Girardi

    (Ricerca Sistema Energetico—RSE SpA, 20134 Milan, Italy)

Abstract

In electric and hybrid vehicles Life Cycle Assessments (LCAs), batteries play a central role and are in the spotlight of scientific community and public opinion. Automotive batteries constitute, together with the powertrain, the main differences between electric vehicles and internal combustion engine vehicles. For this reason, many decision makers and researchers wondered whether energy and environmental impacts from batteries production, can exceed the benefits generated during the vehicle’s use phase. In this framework, the purpose of the present literature review is to understand how large and variable the main impacts are due to automotive batteries’ life cycle, with particular attention to climate change impacts, and to support researchers with some methodological suggestions in the field of automotive batteries’ LCA. The results show that there is high variability in environmental impact assessment; CO 2 eq emissions per kWh of battery capacity range from 50 to 313 g CO 2 eq/kWh. Nevertheless, either using the lower or upper bounds of this range, electric vehicles result less carbon-intensive in their life cycle than corresponding diesel or petrol vehicles.

Suggested Citation

  • Andrea Temporelli & Maria Leonor Carvalho & Pierpaolo Girardi, 2020. "Life Cycle Assessment of Electric Vehicle Batteries: An Overview of Recent Literature," Energies, MDPI, vol. 13(11), pages 1-13, June.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2864-:d:367415
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/11/2864/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/11/2864/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Feng, Sida & Magee, Christopher L., 2020. "Technological development of key domains in electric vehicles: Improvement rates, technology trajectories and key assignees," Applied Energy, Elsevier, vol. 260(C).
    2. Lin Gao & Zach C. Winfield, 2012. "Life Cycle Assessment of Environmental and Economic Impacts of Advanced Vehicles," Energies, MDPI, vol. 5(3), pages 1-16, March.
    3. Christos S. Ioakimidis & Alberto Murillo-Marrodán & Ali Bagheri & Dimitrios Thomas & Konstantinos N. Genikomsakis, 2019. "Life Cycle Assessment of a Lithium Iron Phosphate (LFP) Electric Vehicle Battery in Second Life Application Scenarios," Sustainability, MDPI, vol. 11(9), pages 1-14, May.
    4. Peters, Jens F. & Baumann, Manuel & Zimmermann, Benedikt & Braun, Jessica & Weil, Marcel, 2017. "The environmental impact of Li-Ion batteries and the role of key parameters – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 491-506.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mattia Rapa & Laura Gobbi & Roberto Ruggieri, 2020. "Environmental and Economic Sustainability of Electric Vehicles: Life Cycle Assessment and Life Cycle Costing Evaluation of Electricity Sources," Energies, MDPI, vol. 13(23), pages 1-16, November.
    2. Christian Aichberger & Gerfried Jungmeier, 2020. "Environmental Life Cycle Impacts of Automotive Batteries Based on a Literature Review," Energies, MDPI, vol. 13(23), pages 1-27, December.
    3. Zehong Li & Zhenhua Sun & Wenbiao Zhang & Shaopeng Li, 2023. "Environmental Impact of the Recycling of Ni-Co-Containing Saggars—A LCA Case Study in China," Sustainability, MDPI, vol. 15(9), pages 1-14, April.
    4. Maria Leonor Carvalho & Giulio Mela & Andrea Temporelli & Elisabetta Brivio & Pierpaolo Girardi, 2022. "Sodium-Ion Batteries with Ti 1 Al 1 TiC 1.85 MXene as Negative Electrode: Life Cycle Assessment and Life Critical Resource Use Analysis," Sustainability, MDPI, vol. 14(10), pages 1-18, May.
    5. Yongtao Liu & Chunmei Zhang & Zhuo Hao & Xu Cai & Chuanpan Liu & Jianzhang Zhang & Shu Wang & Yisong Chen, 2023. "Study on the Life Cycle Assessment of Automotive Power Batteries Considering Multi-Cycle Utilization," Energies, MDPI, vol. 16(19), pages 1-24, September.
    6. Picatoste, Aitor & Justel, Daniel & Mendoza, Joan Manuel F., 2022. "Circularity and life cycle environmental impact assessment of batteries for electric vehicles: Industrial challenges, best practices and research guidelines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    7. Phillip K. Agbesi & Rico Ruffino & Marko Hakovirta, 2023. "The development of sustainable electric vehicle business ecosystems," SN Business & Economics, Springer, vol. 3(8), pages 1-59, August.
    8. Kouridis, Ch & Vlachokostas, Ch, 2022. "Towards decarbonizing road transport: Environmental and social benefit of vehicle fleet electrification in urban areas of Greece," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    9. Briac Baudais & Hamid Ben Ahmed & Gurvan Jodin & Nicolas Degrenne & Stéphane Lefebvre, 2023. "Life Cycle Assessment of a 150 kW Electronic Power Inverter," Energies, MDPI, vol. 16(5), pages 1-18, February.
    10. Branco, José Eduardo Holler & da Rocha, Fernando Vinícius & Péra, Thiago Guilherme & de Bastiani, Fernando Pauli & Bartholomeu, Daniela Bacchi & Costa, Everton Lima & Grilo Junior, Isaias, 2024. "Assessing greenhouse gas emissions and costs of Brazilian light-duty vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 206(C).
    11. Brian Charles Barr & Hrund Ólöf Andradóttir & Throstur Thorsteinsson & Sigurður Erlingsson, 2021. "Mitigation of Suspendable Road Dust in a Subpolar, Oceanic Climate," Sustainability, MDPI, vol. 13(17), pages 1-16, August.
    12. Youssef Amry & Elhoussin Elbouchikhi & Franck Le Gall & Mounir Ghogho & Soumia El Hani, 2022. "Electric Vehicle Traction Drives and Charging Station Power Electronics: Current Status and Challenges," Energies, MDPI, vol. 15(16), pages 1-30, August.
    13. Reiko Takahashi & Koji Negishi & Hideki Noda & Mami Mizutani, 2023. "Estimating the Dominant Life Phase Concerning the Effects of Battery Degradation on CO 2 Emissions by Repetitive Cycle Applications: Case Study of an Industrial Battery System Installed in an Electric," Energies, MDPI, vol. 16(3), pages 1-15, February.
    14. Justus Poschmann & Vanessa Bach & Matthias Finkbeiner, 2023. "Decarbonization Potentials for Automotive Supply Chains: Emission-Intensity Pathways of Carbon-Intensive Hotspots of Battery Electric Vehicles," Sustainability, MDPI, vol. 15(15), pages 1-20, July.
    15. Surender Reddy Salkuti, 2023. "Advanced Technologies for Energy Storage and Electric Vehicles," Energies, MDPI, vol. 16(5), pages 1-7, February.
    16. Jacek Pielecha & Kinga Skobiej & Przemyslaw Kubiak & Marek Wozniak & Krzysztof Siczek, 2022. "Exhaust Emissions from Plug-in and HEV Vehicles in Type-Approval Tests and Real Driving Cycles," Energies, MDPI, vol. 15(7), pages 1-38, March.
    17. Gábor Horváth & Attila Bai & Sándor Szegedi & István Lázár & Csongor Máthé & László Huzsvai & Máté Zakar & Zoltán Gabnai & Tamás Tóth, 2023. "A Comprehensive Review of the Distinctive Tendencies of the Diffusion of E-Mobility in Central Europe," Energies, MDPI, vol. 16(14), pages 1-29, July.
    18. Nora Schelte & Semih Severengiz & Jaron Schünemann & Sebastian Finke & Oskar Bauer & Matthias Metzen, 2021. "Life Cycle Assessment on Electric Moped Scooter Sharing," Sustainability, MDPI, vol. 13(15), pages 1-20, July.
    19. Christian Ulrich & Mario Feinauer & Katharina Bieber & Stephan A. Schmid & Horst E. Friedrich, 2023. "Life Cycle Analysis of an On-the-Road Modular Vehicle Concept," Sustainability, MDPI, vol. 15(13), pages 1-16, June.
    20. Maria Leonor Carvalho & Andrea Temporelli & Pierpaolo Girardi, 2021. "Life Cycle Assessment of Stationary Storage Systems within the Italian Electric Network," Energies, MDPI, vol. 14(8), pages 1-19, April.
    21. Elżbieta Broniewicz & Karolina Dec, 2022. "Environmental Impact of Demolishing a Steel Structure Design for Disassembly," Energies, MDPI, vol. 15(19), pages 1-16, October.
    22. Buberger, Johannes & Kersten, Anton & Kuder, Manuel & Eckerle, Richard & Weyh, Thomas & Thiringer, Torbjörn, 2022. "Total CO2-equivalent life-cycle emissions from commercially available passenger cars," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aleksandra Wewer & Pinar Bilge & Franz Dietrich, 2021. "Advances of 2nd Life Applications for Lithium Ion Batteries from Electric Vehicles Based on Energy Demand," Sustainability, MDPI, vol. 13(10), pages 1-22, May.
    2. Yash Kotak & Carlos Marchante Fernández & Lluc Canals Casals & Bhavya Satishbhai Kotak & Daniel Koch & Christian Geisbauer & Lluís Trilla & Alberto Gómez-Núñez & Hans-Georg Schweiger, 2021. "End of Electric Vehicle Batteries: Reuse vs. Recycle," Energies, MDPI, vol. 14(8), pages 1-15, April.
    3. Idiano D’Adamo & Paolo Rosa, 2019. "A Structured Literature Review on Obsolete Electric Vehicles Management Practices," Sustainability, MDPI, vol. 11(23), pages 1-17, December.
    4. Picatoste, Aitor & Justel, Daniel & Mendoza, Joan Manuel F., 2022. "Circularity and life cycle environmental impact assessment of batteries for electric vehicles: Industrial challenges, best practices and research guidelines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    5. Xie, Yunkun & Li, Yangyang & Zhao, Zhichao & Dong, Hao & Wang, Shuqian & Liu, Jingping & Guan, Jinhuan & Duan, Xiongbo, 2020. "Microsimulation of electric vehicle energy consumption and driving range," Applied Energy, Elsevier, vol. 267(C).
    6. Desreveaux, A. & Bouscayrol, A. & Trigui, R. & Hittinger, E. & Castex, E. & Sirbu, G.M., 2023. "Accurate energy consumption for comparison of climate change impact of thermal and electric vehicles," Energy, Elsevier, vol. 268(C).
    7. Piotr Krawczyk & Anna Śliwińska, 2020. "Eco-Efficiency Assessment of the Application of Large-Scale Rechargeable Batteries in a Coal-Fired Power Plant," Energies, MDPI, vol. 13(6), pages 1-16, March.
    8. Mattia Rapa & Laura Gobbi & Roberto Ruggieri, 2020. "Environmental and Economic Sustainability of Electric Vehicles: Life Cycle Assessment and Life Cycle Costing Evaluation of Electricity Sources," Energies, MDPI, vol. 13(23), pages 1-16, November.
    9. Anca N. Iuga (Butnariu) & Vasile N. Popa & Luminița I. Popa, 2018. "Comparative Analysis of Automotive Products Regarding the Influence of Eco-Friendly Methods to Emissions’ Reduction," Energies, MDPI, vol. 12(1), pages 1-24, December.
    10. Cox, Brian & Bauer, Christian & Mendoza Beltran, Angelica & van Vuuren, Detlef P. & Mutel, Christopher L., 2020. "Life cycle environmental and cost comparison of current and future passenger cars under different energy scenarios," Applied Energy, Elsevier, vol. 269(C).
    11. D'Adamo, Idiano & Gastaldi, Massimo & Morone, Piergiuseppe & Ozturk, Ilhan, 2022. "Economics and policy implications of residential photovoltaic systems in Italy's developed market," Utilities Policy, Elsevier, vol. 79(C).
    12. Lybbert, M. & Ghaemi, Z. & Balaji, A.K. & Warren, R., 2021. "Integrating life cycle assessment and electrochemical modeling to study the effects of cell design and operating conditions on the environmental impacts of lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    13. Tian Wu & Mengbo Zhang & Xunmin Ou, 2014. "Analysis of Future Vehicle Energy Demand in China Based on a Gompertz Function Method and Computable General Equilibrium Model," Energies, MDPI, vol. 7(11), pages 1-29, November.
    14. Ringkjøb, Hans-Kristian & Haugan, Peter M. & Nybø, Astrid, 2020. "Transitioning remote Arctic settlements to renewable energy systems – A modelling study of Longyearbyen, Svalbard," Applied Energy, Elsevier, vol. 258(C).
    15. Bayer, Daniel R. & Pruckner, Marco, 2024. "Data-driven heat pump retrofit analysis in residential buildings: Carbon emission reductions and economic viability," Applied Energy, Elsevier, vol. 373(C).
    16. Rémi Delage & Taichi Matsuoka & Toshihiko Nakata, 2021. "Spatial–Temporal Estimation and Analysis of Japan Onshore and Offshore Wind Energy Potential," Energies, MDPI, vol. 14(8), pages 1-12, April.
    17. Manel Arribas-Ibar & Petra A. Nylund & Alexander Brem, 2021. "The Risk of Dissolution of Sustainable Innovation Ecosystems in Times of Crisis: The Electric Vehicle during the COVID-19 Pandemic," Sustainability, MDPI, vol. 13(3), pages 1-14, January.
    18. Siqin Xiong & Junping Ji & Xiaoming Ma, 2019. "Comparative Life Cycle Energy and GHG Emission Analysis for BEVs and PhEVs: A Case Study in China," Energies, MDPI, vol. 12(5), pages 1-17, March.
    19. Christensen, Paul A. & Anderson, Paul A. & Harper, Gavin D.J. & Lambert, Simon M. & Mrozik, Wojciech & Rajaeifar, Mohammad Ali & Wise, Malcolm S. & Heidrich, Oliver, 2021. "Risk management over the life cycle of lithium-ion batteries in electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    20. Jay N. Meegoda & Sarvagna Malladi & Isabel C. Zayas, 2022. "End-of-Life Management of Electric Vehicle Lithium-Ion Batteries in the United States," Clean Technol., MDPI, vol. 4(4), pages 1-13, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2864-:d:367415. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.