IDEAS home Printed from https://ideas.repec.org/a/wly/jfutmk/v42y2022i5p888-922.html
   My bibliography  Save this article

Pricing VXX options by modeling VIX directly

Author

Listed:
  • Wei Lin
  • Jin E. Zhang

Abstract

In this paper, we first develop a theoretical and model‐free VXX formula in terms of Volatility Index (VIX) futures in both discrete and continuous forms. The discrete form of VXX can quantify the roll yield of VXX, which can be used to explain VXX's underperformance. Using the log‐normal Ornstein–Uhlenbeck (LOU) diffusion model, we show how the number of rolls of VIX futures affects the VXX option pricing formula and its implied volatility (IV). To further verify the nonflat IV of VXX, the VXX option pricing formula under the LOU with stochastic volatility model is also derived. Finally, we analyze their pricing performance, and the ability to forecast implied volatilities.

Suggested Citation

  • Wei Lin & Jin E. Zhang, 2022. "Pricing VXX options by modeling VIX directly," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(5), pages 888-922, May.
  • Handle: RePEc:wly:jfutmk:v:42:y:2022:i:5:p:888-922
    DOI: 10.1002/fut.22313
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/fut.22313
    Download Restriction: no

    File URL: https://libkey.io/10.1002/fut.22313?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sebastian A. Gehricke & Jin E. Zhang, 2020. "Modeling VXX under jump diffusion with stochastic long‐term mean," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(10), pages 1508-1534, October.
    2. Nelson, Daniel B., 1990. "ARCH models as diffusion approximations," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 7-38.
    3. Melino, Angelo & Turnbull, Stuart M., 1990. "Pricing foreign currency options with stochastic volatility," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 239-265.
    4. Peter Christoffersen & Kris Jacobs & Karim Mimouni, 2010. "Volatility Dynamics for the S&P500: Evidence from Realized Volatility, Daily Returns, and Option Prices," The Review of Financial Studies, Society for Financial Studies, vol. 23(8), pages 3141-3189, August.
    5. Sebastian A. Gehricke & Jin E. Zhang, 2020. "The implied volatility smirk in the VXX options market," Applied Economics, Taylor & Francis Journals, vol. 52(8), pages 769-788, February.
    6. Mencía, Javier & Sentana, Enrique, 2013. "Valuation of VIX derivatives," Journal of Financial Economics, Elsevier, vol. 108(2), pages 367-391.
    7. Martino Grasselli & Lakshithe Wagalath, 2020. "Vix Versus Vxx: A Joint Analytical Framework," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 23(05), pages 1-39, August.
    8. Jérôme Detemple & Carlton Osakwe, 2000. "The Valuation of Volatility Options," Review of Finance, European Finance Association, vol. 4(1), pages 21-50.
    9. Xiaoyu Tan & Chengxiang Wang & Wei Lin & Jin E. Zhang & Shenghong Li & Xuejun Zhao & Zili Zhang, 2021. "The term structure of the VXX option smirk: Pricing VXX option with a two‐factor model and asymmetry jumps," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(4), pages 439-457, April.
    10. Bao, Qunfang & Li, Shenghong & Gong, Donggeng, 2012. "Pricing VXX option with default risk and positive volatility skew," European Journal of Operational Research, Elsevier, vol. 223(1), pages 246-255.
    11. Darrell Duffie & Jun Pan & Kenneth Singleton, 2000. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," Econometrica, Econometric Society, vol. 68(6), pages 1343-1376, November.
    12. Wiggins, James B., 1987. "Option values under stochastic volatility: Theory and empirical estimates," Journal of Financial Economics, Elsevier, vol. 19(2), pages 351-372, December.
    13. Park, Yang-Ho, 2016. "The effects of asymmetric volatility and jumps on the pricing of VIX derivatives," Journal of Econometrics, Elsevier, vol. 192(1), pages 313-328.
    14. Jin Zhang & Yi Xiang, 2008. "The implied volatility smirk," Quantitative Finance, Taylor & Francis Journals, vol. 8(3), pages 263-284.
    15. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    16. Jiling Cao & Xinfeng Ruan & Shu Su & Wenjun Zhang, 2021. "Specification analysis of VXX option pricing models under Lévy processes," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(9), pages 1456-1477, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Picatoste, Aitor & Justel, Daniel & Mendoza, Joan Manuel F., 2022. "Circularity and life cycle environmental impact assessment of batteries for electric vehicles: Industrial challenges, best practices and research guidelines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoyu Tan & Chengxiang Wang & Wei Lin & Jin E. Zhang & Shenghong Li & Xuejun Zhao & Zili Zhang, 2021. "The term structure of the VXX option smirk: Pricing VXX option with a two‐factor model and asymmetry jumps," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(4), pages 439-457, April.
    2. Kaeck, Andreas & Seeger, Norman J., 2020. "VIX derivatives, hedging and vol-of-vol risk," European Journal of Operational Research, Elsevier, vol. 283(2), pages 767-782.
    3. Chenxu Li, 2014. "Closed-Form Expansion, Conditional Expectation, and Option Valuation," Mathematics of Operations Research, INFORMS, vol. 39(2), pages 487-516, May.
    4. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    5. Bo Jing & Shenghong Li & Yong Ma, 2020. "Pricing VIX options with volatility clustering," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(6), pages 928-944, June.
    6. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    7. F. Fornari & A. Mele, 1998. "ARCH Models and Option Pricing : The Continuous Time Connection," THEMA Working Papers 98-30, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    8. Christoffersen, Peter & Jacobs, Kris & Ornthanalai, Chayawat & Wang, Yintian, 2008. "Option valuation with long-run and short-run volatility components," Journal of Financial Economics, Elsevier, vol. 90(3), pages 272-297, December.
    9. Meddahi, N., 2001. "An Eigenfunction Approach for Volatility Modeling," Cahiers de recherche 2001-29, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    10. Robert Azencott & Yutheeka Gadhyan & Roland Glowinski, 2014. "Option Pricing Accuracy for Estimated Heston Models," Papers 1404.4014, arXiv.org, revised Jul 2015.
    11. Giulia Di Nunno & Kk{e}stutis Kubilius & Yuliya Mishura & Anton Yurchenko-Tytarenko, 2023. "From constant to rough: A survey of continuous volatility modeling," Papers 2309.01033, arXiv.org, revised Sep 2023.
    12. Kaustav Das & Nicolas Langren'e, 2020. "Explicit approximations of option prices via Malliavin calculus in a general stochastic volatility framework," Papers 2006.01542, arXiv.org, revised Jan 2024.
    13. Xinglin Yang & Ji Chen, 2021. "VIX term structure: The role of jump propagation risks," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(6), pages 785-810, June.
    14. Christian Gourieroux & Razvan Sufana, 2004. "Derivative Pricing with Multivariate Stochastic Volatility : Application to Credit Risk," Working Papers 2004-31, Center for Research in Economics and Statistics.
    15. David S. Bates, 1995. "Testing Option Pricing Models," NBER Working Papers 5129, National Bureau of Economic Research, Inc.
    16. David Heath & Simon Hurst & Eckhard Platen, 1999. "Modelling the Stochastic Dynamics of Volatility for Equity Indices," Research Paper Series 7, Quantitative Finance Research Centre, University of Technology, Sydney.
    17. Peter Christoffersen & Steven Heston & Kris Jacobs, 2009. "The Shape and Term Structure of the Index Option Smirk: Why Multifactor Stochastic Volatility Models Work So Well," Management Science, INFORMS, vol. 55(12), pages 1914-1932, December.
    18. Yu, Jun & Yang, Zhenlin & Zhang, Xibin, 2006. "A class of nonlinear stochastic volatility models and its implications for pricing currency options," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2218-2231, December.
    19. Sanjiv Ranjan Das & Rangarajan K. Sundaram, 1997. "Taming the Skew: Higher-Order Moments in Modeling Asset Price Processes in Finance," NBER Working Papers 5976, National Bureau of Economic Research, Inc.
    20. Bjørn Eraker & Aoxiang Yang, 2022. "The Price of Higher Order Catastrophe Insurance: The Case of VIX Options," Journal of Finance, American Finance Association, vol. 77(6), pages 3289-3337, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jfutmk:v:42:y:2022:i:5:p:888-922. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/0270-7314/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.