IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v167y2022ics1364032122005731.html
   My bibliography  Save this article

A review of directly irradiated solid particle receivers: Technologies and influencing parameters

Author

Listed:
  • Tawfik, Mohamed

Abstract

In concentrated solar power (CSP) systems, increasing the heat transfer fluid (HTF) temperature leads to efficient operation by reducing energy loss from thermal receivers. Moreover, CSP systems with high HTF temperatures allow thermal energy storage (TES) to supply the overnight demand. One of the most commonly used ways to implement TES in commercial CSP systems is using molten salts as HTFs. However, using such HTFs limits the operating temperature to less than 800 °C to ensure their stability. To overcome such limitation, using receivers operated by solid particles as both HTF and TES medium has emerged as a promising solution, as some particles can reach temperatures exceeding 1000 °C. Solid particles are directly heated by falling through concentrated sunlight in the solid particle receiver (SPR). SPRs are categorized into directly and indirectly irradiated types. This work focuses on directly irradiated SPRs, as they represent the most common systems. This review covers different subcategories of directly irradiated SPRs that attracted the researchers to investigate. It also presents an overview of the current research trends through statistical analysis of reviewed literature. Finally, the present work also analyzed different parameters influencing SPRs performance according to the findings cited in the literature.

Suggested Citation

  • Tawfik, Mohamed, 2022. "A review of directly irradiated solid particle receivers: Technologies and influencing parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
  • Handle: RePEc:eee:rensus:v:167:y:2022:i:c:s1364032122005731
    DOI: 10.1016/j.rser.2022.112682
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032122005731
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2022.112682?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sarker, M.R.I. & Mandal, Soumya & Tuly, Sumaiya Sadika, 2018. "Numerical study on the influence of vortex flow and recirculating flow into a solid particle solar receiver," Renewable Energy, Elsevier, vol. 129(PA), pages 409-418.
    2. Calderón, Alejandro & Palacios, Anabel & Barreneche, Camila & Segarra, Mercè & Prieto, Cristina & Rodriguez-Sanchez, Alfonso & Fernández, A. Inés, 2018. "High temperature systems using solid particles as TES and HTF material: A review," Applied Energy, Elsevier, vol. 213(C), pages 100-111.
    3. Tan, Taide & Chen, Yitung, 2010. "Review of study on solid particle solar receivers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 265-276, January.
    4. Zuo, Hongyang & Zhou, Yuan & Wu, Mingyang & Zeng, Kuo & Chang, Zheshao & Chen, Sheng & Lu, Wang & Flamant, Gilles, 2021. "Development and numerical investigation of parallel combined sensible-latent heat storage unit with intermittent flow for concentrated solar power plants," Renewable Energy, Elsevier, vol. 175(C), pages 29-43.
    5. Hachicha, Ahmed Amine & Yousef, Bashria A.A. & Said, Zafar & Rodríguez, Ivette, 2019. "A review study on the modeling of high-temperature solar thermal collector systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 280-298.
    6. Ho, Clifford K. & Iverson, Brian D., 2014. "Review of high-temperature central receiver designs for concentrating solar power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 835-846.
    7. Li, Xian & Wei, Liping & Lim, Chia Wei & Chen, Jialing & Chu, Peng & Lipiński, Wojciech & Yan, Ning & Dai, Yanjun & Wang, Chi-Hwa, 2022. "Experimental and numerical study on thermal performance of an indirectly irradiated solar reactor with a clapboard-type internally circulating fluidized bed," Applied Energy, Elsevier, vol. 305(C).
    8. Bauer, Thomas & Pfleger, Nicole & Breidenbach, Nils & Eck, Markus & Laing, Doerte & Kaesche, Stefanie, 2013. "Material aspects of Solar Salt for sensible heat storage," Applied Energy, Elsevier, vol. 111(C), pages 1114-1119.
    9. Diago, Miguel & Iniesta, Alberto Crespo & Soum-Glaude, Audrey & Calvet, Nicolas, 2018. "Characterization of desert sand to be used as a high-temperature thermal energy storage medium in particle solar receiver technology," Applied Energy, Elsevier, vol. 216(C), pages 402-413.
    10. Abanades, Stéphane & André, Laurie, 2018. "Design and demonstration of a high temperature solar-heated rotary tube reactor for continuous particles calcination," Applied Energy, Elsevier, vol. 212(C), pages 1310-1320.
    11. Fang, Wenchao & Chen, Sheng & Xu, Jingying & Zeng, Kuo, 2021. "Predicting heat transfer coefficient of a shell-and-plate, moving packed-bed particle-to-sCO2 heat exchanger for concentrating solar power," Energy, Elsevier, vol. 217(C).
    12. Mekhilef, S. & Saidur, R. & Safari, A., 2011. "A review on solar energy use in industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1777-1790, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guilong Dai & Jiangfei Huangfu & Xiaoyu Wang & Shenghua Du & Tian Zhao, 2023. "A Review of Radiative Heat Transfer in Fixed-Bed Particle Solar Receivers," Sustainability, MDPI, vol. 15(13), pages 1-37, June.
    2. Mohamed Allam & Mohamed Tawfik & Maher Bekheit & Emad El-Negiry, 2022. "Experimental Investigation on Performance Enhancement of Parabolic Trough Concentrator with Helical Rotating Shaft Insert," Sustainability, MDPI, vol. 14(22), pages 1-25, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gimeno-Furio, A. & Hernandez, L. & Martinez-Cuenca, R. & Mondragón, R. & Vela, A. & Cabedo, L. & Barreneche, C. & Iacob, M., 2020. "New coloured coatings to enhance silica sand absorbance for direct particle solar receiver applications," Renewable Energy, Elsevier, vol. 152(C), pages 1-8.
    2. Calderón, Alejandro & Palacios, Anabel & Barreneche, Camila & Segarra, Mercè & Prieto, Cristina & Rodriguez-Sanchez, Alfonso & Fernández, A. Inés, 2018. "High temperature systems using solid particles as TES and HTF material: A review," Applied Energy, Elsevier, vol. 213(C), pages 100-111.
    3. Yang, Jingze & Yang, Zhen & Duan, Yuanyuan, 2022. "A review on integrated design and off-design operation of solar power tower system with S–CO2 Brayton cycle," Energy, Elsevier, vol. 246(C).
    4. Hachicha, Ahmed Amine & Yousef, Bashria A.A. & Said, Zafar & Rodríguez, Ivette, 2019. "A review study on the modeling of high-temperature solar thermal collector systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 280-298.
    5. Li Wang & Long Yang & Junjie Liu & Pei Wang, 2021. "Study on Spectral Radiative Heat Transfer Characteristics of a Windowed Receiver with Particle Curtain," Energies, MDPI, vol. 14(10), pages 1-16, May.
    6. Fernández, Angel G. & Gomez-Vidal, Judith & Oró, Eduard & Kruizenga, Alan & Solé, Aran & Cabeza, Luisa F., 2019. "Mainstreaming commercial CSP systems: A technology review," Renewable Energy, Elsevier, vol. 140(C), pages 152-176.
    7. Conroy, Tim & Collins, Maurice N. & Grimes, Ronan, 2020. "A review of steady-state thermal and mechanical modelling on tubular solar receivers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    8. Singh, Manmeet & Sharma, Manoj Kumar & Bhattacharya, Jishnu, 2021. "Design methodology of a parabolic trough collector field for maximum annual energy yield," Renewable Energy, Elsevier, vol. 177(C), pages 229-241.
    9. Vigneshwaran, K. & Sodhi, Gurpreet Singh & Muthukumar, P. & Guha, Anurag & Senthilmurugan, S., 2019. "Experimental and numerical investigations on high temperature cast steel based sensible heat storage system," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    10. Fadi Alnaimat & Yasir Rashid, 2019. "Thermal Energy Storage in Solar Power Plants: A Review of the Materials, Associated Limitations, and Proposed Solutions," Energies, MDPI, vol. 12(21), pages 1-19, October.
    11. Lucía Arribas & José González-Aguilar & Manuel Romero, 2018. "Solar-Driven Thermochemical Water-Splitting by Cerium Oxide: Determination of Operational Conditions in a Directly Irradiated Fixed Bed Reactor," Energies, MDPI, vol. 11(9), pages 1-15, September.
    12. Jiang, Kaijun & Du, Xiaoze & Zhang, Qiang & Kong, Yanqiang & Xu, Chao & Ju, Xing, 2021. "Review on gas-solid fluidized bed particle solar receivers applied in concentrated solar applications: Materials, configurations and methodologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    13. Ang, Daniel & Chinnici, Alfonso & Tian, Zhao F. & Saw, Woei L. & Nathan, Graham J., 2022. "Influence of particle loading, Froude and Stokes number on the global thermal performance of a vortex-based solar particle receiver," Renewable Energy, Elsevier, vol. 184(C), pages 201-214.
    14. Brantley H. Mills & Clifford K. Ho & Nathaniel R. Schroeder & Reid Shaeffer & Hendrik F. Laubscher & Kevin J. Albrecht, 2022. "Design Evaluation of a Next-Generation High-Temperature Particle Receiver for Concentrating Solar Thermal Applications," Energies, MDPI, vol. 15(5), pages 1-20, February.
    15. Guilong Dai & Jiangfei Huangfu & Xiaoyu Wang & Shenghua Du & Tian Zhao, 2023. "A Review of Radiative Heat Transfer in Fixed-Bed Particle Solar Receivers," Sustainability, MDPI, vol. 15(13), pages 1-37, June.
    16. Islam, Md Tasbirul & Huda, Nazmul & Abdullah, A.B. & Saidur, R., 2018. "A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: Current status and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 987-1018.
    17. Rafique, Muhammad M. & Nathan, Graham & Saw, Woei, 2022. "Modelled annual thermal performance of a 50MWth refractory-lined particle-laden solar receiver operating above 1000°C," Renewable Energy, Elsevier, vol. 197(C), pages 1081-1093.
    18. Fang, Wenchao & Chen, Sheng & Shi, Shuo, 2022. "Dynamic characteristics and real-time control of a particle-to-sCO2 moving bed heat exchanger assisted by BP neural network," Energy, Elsevier, vol. 256(C).
    19. Marc Majó & Adela Svobodova-Sedlackova & Ana Inés Fernández & Alejandro Calderón & Camila Barreneche, 2024. "Thermal Cycling Test of Solar Salt in Contact with Sustainable Solid Particles for Concentrating Solar Power (CSP) Plants," Energies, MDPI, vol. 17(10), pages 1-10, May.
    20. Xing Tian & Jian Yang & Zhigang Guo & Qiuwang Wang, 2021. "Numerical Investigation of Gravity-Driven Granular Flow around the Vertical Plate: Effect of Pin-Fin and Oscillation on the Heat Transfer," Energies, MDPI, vol. 14(8), pages 1-14, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:167:y:2022:i:c:s1364032122005731. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.