IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i22p14667-d966042.html
   My bibliography  Save this article

Experimental Investigation on Performance Enhancement of Parabolic Trough Concentrator with Helical Rotating Shaft Insert

Author

Listed:
  • Mohamed Allam

    (Misr International Technological University MITU, Cairo 11725, Egypt
    Mechanical Power Engineering Department, Faculty of Engineering, Mansoura University, Mansoura 35516, Egypt)

  • Mohamed Tawfik

    (Mechanical Power Engineering Department, Faculty of Engineering, Mansoura University, Mansoura 35516, Egypt)

  • Maher Bekheit

    (Mechanical Power Engineering Department, Faculty of Engineering, Mansoura University, Mansoura 35516, Egypt)

  • Emad El-Negiry

    (Mechanical Power Engineering Department, Faculty of Engineering, Mansoura University, Mansoura 35516, Egypt)

Abstract

The parabolic trough collector provides an extensive range of solar heating and electricity production applications in solar power plants. The receiver tube of the parabolic trough collector has a vital role in enhancing its performance by using different inserts inside it. In the present work, outdoor experimental tests were conducted to study the performance of a small-scale parabolic trough collector equipped with a centrally placed rotating helical shaft. Three cases were studied: a parabolic trough collector without helical shaft insert, a parabolic trough collector with stationary helical shaft insert, and a parabolic trough collector with a rotating helical shaft insert. The experiments are performed for different shaft rotational speeds (4, 11, and 21 RPM) and various flow rates (0.5, 1, 1.5, 2, and 2.5 LPM) of water as a heat transfer fluid. The fluid flow and heat transfer parameters (friction factor, Reynolds number, Nusselt number, and thermal enhancement factor) and performance parameters (thermal, overall, and exergetic efficiencies) are studied. The results indicated that the helical shaft insert had increased the required pumping power for the same flow rate. However, the parabolic trough collector thermal performance has enhanced with the shaft rotational speed. For all cases, the parabolic trough collector efficiency increases with the flow rate of the heat transfer fluid, but the percentage enhancement in efficiency decreases. Using a shaft rotational speed of 21 RPM and heat transfer fluid flow rates of 0.5 LPM leads to maximum thermal efficiency enhancement and a maximum friction factor ratio of 46.47% and 7.7 times, respectively, compared to plain tube. A comparison based on the same pumping power (thermal enhancement factor) shows that the maximum enhancement occurs at a flow rate of 1 LPM, and the efficiency enhancement is about 37% at a shaft rotational speed of 21 RPM. From an economic point of view, using a rotating helical shaft produces the lower annual cost of useful heat per kWh.

Suggested Citation

  • Mohamed Allam & Mohamed Tawfik & Maher Bekheit & Emad El-Negiry, 2022. "Experimental Investigation on Performance Enhancement of Parabolic Trough Concentrator with Helical Rotating Shaft Insert," Sustainability, MDPI, vol. 14(22), pages 1-25, November.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:22:p:14667-:d:966042
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/22/14667/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/22/14667/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chinnasamy Subramaniyan & Jothirathinam Subramani & Balasubramanian Kalidasan & Natarajan Anbuselvan & Thangaraj Yuvaraj & Natarajan Prabaharan & Tomonobu Senjyu, 2021. "Investigation on the Optical Design and Performance of a Single-Axis-Tracking Solar Parabolic trough Collector with a Secondary Reflector," Sustainability, MDPI, vol. 13(17), pages 1-19, September.
    2. Tawfik, Mohamed, 2022. "A review of directly irradiated solid particle receivers: Technologies and influencing parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    3. Peng, Hao & Li, Meilin & Liang, Xingang, 2020. "Thermal-hydraulic and thermodynamic performance of parabolic trough solar receiver partially filled with gradient metal foam," Energy, Elsevier, vol. 211(C).
    4. Mwesigye, Aggrey & Bello-Ochende, Tunde & Meyer, Josua P., 2014. "Heat transfer and thermodynamic performance of a parabolic trough receiver with centrally placed perforated plate inserts," Applied Energy, Elsevier, vol. 136(C), pages 989-1003.
    5. Reddy, K.S. & Ravi Kumar, K. & Ajay, C.S., 2015. "Experimental investigation of porous disc enhanced receiver for solar parabolic trough collector," Renewable Energy, Elsevier, vol. 77(C), pages 308-319.
    6. Xiao, Hui & Liu, Peng & Liu, Zhichun & Liu, Wei, 2021. "Performance analyses in parabolic trough collectors by inserting novel inclined curved-twisted baffles," Renewable Energy, Elsevier, vol. 165(P2), pages 14-27.
    7. Song, Xingwang & Dong, Guobo & Gao, Fangyuan & Diao, Xungang & Zheng, Liqing & Zhou, Fuyun, 2014. "A numerical study of parabolic trough receiver with nonuniform heat flux and helical screw-tape inserts," Energy, Elsevier, vol. 77(C), pages 771-782.
    8. Muhammad Khurram Khan, 2020. "Technological advancements and 2020," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 73(1), pages 1-2, January.
    9. Jamal-Abad, Milad Tajik & Saedodin, Seyfollah & Aminy, Mohammad, 2017. "Experimental investigation on a solar parabolic trough collector for absorber tube filled with porous media," Renewable Energy, Elsevier, vol. 107(C), pages 156-163.
    10. Mousa, Mohamed H. & Miljkovic, Nenad & Nawaz, Kashif, 2021. "Review of heat transfer enhancement techniques for single phase flows," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    11. Akbarzadeh, Sanaz & Valipour, Mohammad Sadegh, 2020. "Energy and exergy analysis of a parabolic trough collector using helically corrugated absorber tube," Renewable Energy, Elsevier, vol. 155(C), pages 735-747.
    12. Evangelos Bellos & Christos Tzivanidis, 2018. "Enhancing the Performance of Evacuated and Non-Evacuated Parabolic Trough Collectors Using Twisted Tape Inserts, Perforated Plate Inserts and Internally Finned Absorber," Energies, MDPI, vol. 11(5), pages 1-28, May.
    13. Bellos, Evangelos & Tzivanidis, Christos, 2018. "Investigation of a star flow insert in a parabolic trough solar collector," Applied Energy, Elsevier, vol. 224(C), pages 86-102.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ebadi, Hossein & Cammi, Antonio & Difonzo, Rosa & Rodríguez, José & Savoldi, Laura, 2023. "Experimental investigation on an air tubular absorber enhanced with Raschig Rings porous medium in a solar furnace," Applied Energy, Elsevier, vol. 342(C).
    2. Reza Roohi & Amir Arya & Masoud Akbari & Mohammad Javad Amiri, 2023. "Performance Evaluation of an Absorber Tube of a Parabolic Trough Collector Fitted with Helical Screw Tape Inserts Using CuO/Industrial-Oil Nanofluid: A Computational Study," Sustainability, MDPI, vol. 15(13), pages 1-19, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gong, Jing-hu & Wang, Jun & Lund, Peter D. & Zhao, Dan-dan & Xu, Jing-wen & Jin, Yi-hao, 2021. "Comparative study of heat transfer enhancement using different fins in semi-circular absorber tube for large-aperture trough solar concentrator," Renewable Energy, Elsevier, vol. 169(C), pages 1229-1241.
    2. Ou, Gen & Liu, Peng & Liu, Zhichun & Liu, Wei, 2022. "Performance analyses and heat transfer optimization of parabolic trough receiver with a novel single conical strip insert," Renewable Energy, Elsevier, vol. 199(C), pages 335-350.
    3. Evangelos Bellos & Christos Tzivanidis, 2018. "Enhancing the Performance of Evacuated and Non-Evacuated Parabolic Trough Collectors Using Twisted Tape Inserts, Perforated Plate Inserts and Internally Finned Absorber," Energies, MDPI, vol. 11(5), pages 1-28, May.
    4. Tabish Alam & Nagesh Babu Balam & Kishor Sitaram Kulkarni & Md Irfanul Haque Siddiqui & Nishant Raj Kapoor & Chandan Swaroop Meena & Ashok Kumar & Raffaello Cozzolino, 2021. "Performance Augmentation of the Flat Plate Solar Thermal Collector: A Review," Energies, MDPI, vol. 14(19), pages 1-23, September.
    5. Bellos, Evangelos & Tzivanidis, Christos, 2018. "Investigation of a star flow insert in a parabolic trough solar collector," Applied Energy, Elsevier, vol. 224(C), pages 86-102.
    6. Yılmaz, İbrahim Halil & Mwesigye, Aggrey, 2018. "Modeling, simulation and performance analysis of parabolic trough solar collectors: A comprehensive review," Applied Energy, Elsevier, vol. 225(C), pages 135-174.
    7. Manikandan, G.K. & Iniyan, S. & Goic, Ranko, 2019. "Enhancing the optical and thermal efficiency of a parabolic trough collector – A review," Applied Energy, Elsevier, vol. 235(C), pages 1524-1540.
    8. Yang, S. & Ordonez, J.C., 2019. "3D thermal-hydraulic analysis of a symmetric wavy parabolic trough absorber pipe," Energy, Elsevier, vol. 189(C).
    9. Bellos, Evangelos & Tzivanidis, Christos & Tsimpoukis, Dimitrios, 2018. "Enhancing the performance of parabolic trough collectors using nanofluids and turbulators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 358-375.
    10. Peng, Hao & Li, Meilin & Liang, Xingang, 2020. "Thermal-hydraulic and thermodynamic performance of parabolic trough solar receiver partially filled with gradient metal foam," Energy, Elsevier, vol. 211(C).
    11. Xiao, Hui & Liu, Peng & Liu, Zhichun & Liu, Wei, 2021. "Performance analyses in parabolic trough collectors by inserting novel inclined curved-twisted baffles," Renewable Energy, Elsevier, vol. 165(P2), pages 14-27.
    12. Kumaresan, G. & Sudhakar, P. & Santosh, R. & Velraj, R., 2017. "Experimental and numerical studies of thermal performance enhancement in the receiver part of solar parabolic trough collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1363-1374.
    13. Ajbar, Wassila & Parrales, A. & Huicochea, A. & Hernández, J.A., 2022. "Different ways to improve parabolic trough solar collectors’ performance over the last four decades and their applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    14. Teerapath Limboonruang & Muyiwa Oyinlola & Dani Harmanto & Pracha Bunyawanichakul & Nittalin Phunapai, 2023. "Optimizing Solar Parabolic Trough Receivers with External Fins: An Experimental Study on Enhancing Heat Transfer and Thermal Efficiency," Energies, MDPI, vol. 16(18), pages 1-22, September.
    15. Halimi, Mohammed & El Amrani, Aumeur & Messaoudi, Choukri, 2021. "New experimental investigation of the circumferential temperature uniformity for a PTC absorber," Energy, Elsevier, vol. 234(C).
    16. Osorio, Julian D. & Rivera-Alvarez, Alejandro, 2022. "Influence of the concentration ratio on the thermal and economic performance of parabolic trough collectors," Renewable Energy, Elsevier, vol. 181(C), pages 786-802.
    17. Mohammed, Hussein A. & Vuthaluru, Hari B. & Liu, Shaomin, 2022. "Thermohydraulic and thermodynamics performance of hybrid nanofluids based parabolic trough solar collector equipped with wavy promoters," Renewable Energy, Elsevier, vol. 182(C), pages 401-426.
    18. Bellos, Evangelos & Tzivanidis, Christos & Tsimpoukis, Dimitrios, 2017. "Multi-criteria evaluation of parabolic trough collector with internally finned absorbers," Applied Energy, Elsevier, vol. 205(C), pages 540-561.
    19. Kaood, Amr & Ismail, Omar A. & Al-Tohamy, Amro H., 2024. "Hydrothermal performance assessment of a parabolic trough with proposed conical solar receiver," Renewable Energy, Elsevier, vol. 222(C).
    20. Vengadesan, Elumalai & Ismail Rumaney, Abdul Rahim & Mitra, Rohan & Harichandan, Sattwik & Senthil, Ramalingam, 2022. "Heat transfer enhancement of a parabolic trough solar collector using a semicircular multitube absorber," Renewable Energy, Elsevier, vol. 196(C), pages 111-124.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:22:p:14667-:d:966042. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.