IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v15y2011i4p1885-1892.html
   My bibliography  Save this article

Crop residue biomass for decentralized electrical power generation in rural areas (part 1): Investigation of spatial availability

Author

Listed:
  • Hiloidhari, M.
  • Baruah, D.C.

Abstract

Spatial assessments of crop residue biomass and its power potential at village level in Sonitpur district of Assam, India is presented in this paper. Recent IRS P6 LISS-III remote sensing data of the study area is analyzed in GIS environment to map crop areas and subsequently residue biomass availability at village level. Altogether 16 different types of crop residues are identified in the district with rice crop as dominant residue. About 0.17 million tonnes of crop residue biomass, having about 17Â MW potential power, is spatially distributed in the rural areas of the district. Village level biomass power mapping is done assuming combustion route of decentralized power generation. Considering the acute shortage of grid connected power supply in the study area, the decentralized crop residue based power generation could be an attractive option. At individual level, thermal power plant up to 72Â kW could be possible to cater the essential power need of the villager.

Suggested Citation

  • Hiloidhari, M. & Baruah, D.C., 2011. "Crop residue biomass for decentralized electrical power generation in rural areas (part 1): Investigation of spatial availability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1885-1892, May.
  • Handle: RePEc:eee:rensus:v:15:y:2011:i:4:p:1885-1892
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364-0321(10)00445-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ramachandra, T.V. & Shruthi, B.V., 2007. "Spatial mapping of renewable energy potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(7), pages 1460-1480, September.
    2. Kusre, B.C. & Baruah, D.C. & Bordoloi, P.K. & Patra, S.C., 2010. "Assessment of hydropower potential using GIS and hydrological modeling technique in Kopili River basin in Assam (India)," Applied Energy, Elsevier, vol. 87(1), pages 298-309, January.
    3. Chaurey, Akanksha & Ranganathan, Malini & Mohanty, Parimita, 2004. "Electricity access for geographically disadvantaged rural communities--technology and policy insights," Energy Policy, Elsevier, vol. 32(15), pages 1693-1705, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pode, Ramchandra & Diouf, Boucar & Pode, Gayatri, 2015. "Sustainable rural electrification using rice husk biomass energy: A case study of Cambodia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 530-542.
    2. Hiloidhari, Moonmoon & Das, Dhiman & Baruah, D.C., 2014. "Bioenergy potential from crop residue biomass in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 504-512.
    3. Brahma, Antara & Saikia, Kangkana & Hiloidhari, Moonmoon & Baruah, D.C., 2016. "GIS based planning of a biomethanation power plant in Assam, India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 596-608.
    4. Yuan, Ye & Zhao, Jianing, 2014. "Study on the supply capacity of crop residue as energy in rural areas of Heilongjiang province of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 526-536.
    5. Xinliang Xu & Ying Fu & Shuang Li, 2013. "Spatiotemporal Changes in Crop Residues with Potential for Bioenergy Use in China from 1990 to 2010," Energies, MDPI, vol. 6(12), pages 1-17, November.
    6. Avinash Bharti & Kunwar Paritosh & Venkata Ravibabu Mandla & Aakash Chawade & Vivekanand Vivekanand, 2021. "GIS Application for the Estimation of Bioenergy Potential from Agriculture Residues: An Overview," Energies, MDPI, vol. 14(4), pages 1-15, February.
    7. Park, Sung Jin & Son, Seong Hye & Kook, Jin Woo & Ra, Ho Won & Yoon, Sang Jun & Mun, Tae-Young & Moon, Ji Hong & Yoon, Sung Min & Kim, Jae Ho & Kim, Yong Ku & Lee, Jae Goo & Lee, Do-Yong & Seo, Myung , 2021. "Gasification operational characteristics of 20-tons-Per-Day rice husk fluidized-bed reactor," Renewable Energy, Elsevier, vol. 169(C), pages 788-798.
    8. Shane, Agabu & Gheewala, Shabbir H. & Fungtammasan, Bundit & Silalertruksa, Thapat & Bonnet, Sébastien & Phiri, Seveliano, 2016. "Bioenergy resource assessment for Zambia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 93-104.
    9. Singh, Jaswinder, 2016. "A roadmap for production of sustainable, consistent and reliable electric power from agricultural biomass- An Indian perspective," Energy Policy, Elsevier, vol. 92(C), pages 246-254.
    10. Chakraborty, Abhishek & Biswal, Anima & Pandey, Varun & Shadab, Syed & Kalyandeep, K. & Murthy, C.S. & Seshasai, M.V.R. & Rao, P.V.N. & Jain, Niveta & Sehgal, V.K. & Kaushik, Nirmala & Singh, Sanjay &, 2022. "Developing a spatial information system of biomass potential from crop residues over India: A decision support for planning and establishment of biofuel/biomass power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    11. Singh, Jaswinder, 2016. "Identifying an economic power production system based on agricultural straw on regional basis in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1140-1155.
    12. Cao, Jie & Pang, Bin & Mo, Xiaoping & Xu, Fangyan, 2016. "A new model that using transfer stations for straw collection and transportation in the rural areas of China: A case of Jinghai, Tianjin," Renewable Energy, Elsevier, vol. 99(C), pages 911-918.
    13. Lohan, Shiv Kumar & Jat, H.S. & Yadav, Arvind Kumar & Sidhu, H.S. & Jat, M.L. & Choudhary, Madhu & Peter, Jyotsna Kiran & Sharma, P.C., 2018. "Burning issues of paddy residue management in north-west states of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 693-706.
    14. Singh, Jaswinder, 2015. "Overview of electric power potential of surplus agricultural biomass from economic, social, environmental and technical perspective—A case study of Punjab," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 286-297.
    15. Calvert, K. & Pearce, J.M. & Mabee, W.E., 2013. "Toward renewable energy geo-information infrastructures: Applications of GIScience and remote sensing that build institutional capacity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 416-429.
    16. Tumen Ozdil, N.F. & Caliskan, M., 2022. "Energy potential from biomass from agricultural crops: Development prospects of the Turkish bioeconomy," Energy, Elsevier, vol. 249(C).
    17. Kala, L.D. & Subbarao, P.M.V., 2018. "Estimation of pine needle availability in the Central Himalayan state of Uttarakhand, India for use as energy feedstock," Renewable Energy, Elsevier, vol. 128(PA), pages 9-19.
    18. Anand, Abhijeet & Kumar, Vivek & Kaushal, Priyanka, 2022. "Biochar and its twin benefits: Crop residue management and climate change mitigation in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    19. Sun, Yanwei & Wang, Run & Liu, Jian & Xiao, Lishan & Lin, Yanjie & Kao, William, 2013. "Spatial planning framework for biomass resources for power production at regional level: A case study for Fujian Province, China," Applied Energy, Elsevier, vol. 106(C), pages 391-406.
    20. Jin Su Jeong & Álvaro Ramírez-Gómez, 2017. "A Multicriteria GIS-Based Assessment to Optimize Biomass Facility Sites with Parallel Environment—A Case Study in Spain," Energies, MDPI, vol. 10(12), pages 1-14, December.
    21. Jat, H.S. & Jat, R.D. & Nanwal, R.K. & Lohan, Shiv Kumar & Yadav, A.K. & Poonia, Tanuja & Sharma, P.C. & Jat, M.L., 2020. "Energy use efficiency of crop residue management for sustainable energy and agriculture conservation in NW India," Renewable Energy, Elsevier, vol. 155(C), pages 1372-1382.
    22. Pode, Ramchandra, 2016. "Potential applications of rice husk ash waste from rice husk biomass power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1468-1485.
    23. Algieri, Angelo & Andiloro, Serafina & Tamburino, Vincenzo & Zema, Demetrio Antonio, 2019. "The potential of agricultural residues for energy production in Calabria (Southern Italy)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 1-14.
    24. Jinyoung Chun & Jin Hyung Lee, 2020. "Recent Progress on the Development of Engineered Silica Particles Derived from Rice Husk," Sustainability, MDPI, vol. 12(24), pages 1-19, December.
    25. Tanvir Ahmed & Bashir Ahmad, 2014. "Burning of Crop Residue and its Potential for Electricity Generation," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 53(3), pages 275-292.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Izadyar, Nima & Ong, Hwai Chyuan & Chong, W.T. & Leong, K.Y., 2016. "Resource assessment of the renewable energy potential for a remote area: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 908-923.
    2. Anita Kwartnik-Pruc & Aneta Mączyńska, 2022. "Assessing Validity of Employing Surveying Methods to Capture Data on Topography to Determine Hydrological and Topographic Parameters Essential for Selecting Locations for the Construction of Small Hyd," Energies, MDPI, vol. 15(4), pages 1-41, February.
    3. Xu, Bin & Lin, Boqiang, 2018. "Do we really understand the development of China's new energy industry?," Energy Economics, Elsevier, vol. 74(C), pages 733-745.
    4. Murshed, Muntasir, 2019. "Trade Liberalization Policies and Renewable Energy Transition in Low and Middle-Income Countries? An Instrumental Variable Approach," MPRA Paper 97075, University Library of Munich, Germany.
    5. Torero, Maximo, 2014. "The Impact of Rural Electrification," MPRA Paper 61425, University Library of Munich, Germany.
    6. Ramachandra, T.V., 2009. "RIEP: Regional integrated energy plan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 285-317, February.
    7. Fanzhang Zeng & Sifan Jin & Lei Ye & Xuezhi Gu & Jun Guo, 2023. "Analysis of flood conveyance capacity of small- and medium-sized river and flood managements," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 447-467, March.
    8. Bocca, Alberto & Chiavazzo, Eliodoro & Macii, Alberto & Asinari, Pietro, 2015. "Solar energy potential assessment: An overview and a fast modeling approach with application to Italy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 291-296.
    9. Christoph Sejkora & Lisa Kühberger & Fabian Radner & Alexander Trattner & Thomas Kienberger, 2020. "Exergy as Criteria for Efficient Energy Systems—A Spatially Resolved Comparison of the Current Exergy Consumption, the Current Useful Exergy Demand and Renewable Exergy Potential," Energies, MDPI, vol. 13(4), pages 1-51, February.
    10. Defne, Zafer & Haas, Kevin A. & Fritz, Hermann M., 2011. "GIS based multi-criteria assessment of tidal stream power potential: A case study for Georgia, USA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2310-2321, June.
    11. Sherry Shiqian Gao & Madeline Jun Yu Yon & Kitty Jieyi Chen & Duangporn Duangthip & Edward Chin Man Lo & Chun Hung Chu, 2019. "Utilization of a Mobile Dental Vehicle for Oral Healthcare in Rural Areas," IJERPH, MDPI, vol. 16(7), pages 1-8, April.
    12. Nouni, M.R. & Mullick, S.C. & Kandpal, T.C., 2008. "Providing electricity access to remote areas in India: An approach towards identifying potential areas for decentralized electricity supply," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(5), pages 1187-1220, June.
    13. Calvert, K. & Pearce, J.M. & Mabee, W.E., 2013. "Toward renewable energy geo-information infrastructures: Applications of GIScience and remote sensing that build institutional capacity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 416-429.
    14. Venturini, Mauro & Manservigi, Lucrezia & Alvisi, Stefano & Simani, Silvio, 2018. "Development of a physics-based model to predict the performance of pumps as turbines," Applied Energy, Elsevier, vol. 231(C), pages 343-354.
    15. Qianna Wang & Martin Mwirigi M'Ikiugu & Isami Kinoshita, 2014. "A GIS-Based Approach in Support of Spatial Planning for Renewable Energy: A Case Study of Fukushima, Japan," Sustainability, MDPI, vol. 6(4), pages 1-31, April.
    16. Garces, Estefany & Franco, Carlos J. & Tomei, Julia & Dyner, Isaac, 2023. "Sustainable electricity supply for small off-grid communities in Colombia: A system dynamics approach," Energy Policy, Elsevier, vol. 172(C).
    17. Rogeau, A. & Girard, R. & Kariniotakis, G., 2017. "A generic GIS-based method for small Pumped Hydro Energy Storage (PHES) potential evaluation at large scale," Applied Energy, Elsevier, vol. 197(C), pages 241-253.
    18. Mezher, Toufic & Dawelbait, Gihan & Abbas, Zeina, 2012. "Renewable energy policy options for Abu Dhabi: Drivers and barriers," Energy Policy, Elsevier, vol. 42(C), pages 315-328.
    19. Gerardo Alcalá & Luis Fernando Grisales-Noreña & Quetzalcoatl Hernandez-Escobedo & Jose Javier Muñoz-Criollo & J. D. Revuelta-Acosta, 2021. "SHP Assessment for a Run-of-River (RoR) Scheme Using a Rectangular Mesh Sweeping Approach (MSA) Based on GIS," Energies, MDPI, vol. 14(11), pages 1-21, May.
    20. Operacz, Agnieszka, 2017. "The term “effective hydropower potential” based on sustainable development – an initial case study of the Raba river in Poland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1453-1463.

    More about this item

    Keywords

    Crop residue biomass IRS P6 LISS-III GIS;

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:15:y:2011:i:4:p:1885-1892. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.