IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v6y2013i12p6153-6169d30822.html
   My bibliography  Save this article

Spatiotemporal Changes in Crop Residues with Potential for Bioenergy Use in China from 1990 to 2010

Author

Listed:
  • Xinliang Xu

    (State Key Laboratory of Resources and Environmental Information Systems, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China)

  • Ying Fu

    (State Key Laboratory of Resources and Environmental Information Systems, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Shuang Li

    (State Key Laboratory of Resources and Environmental Information Systems, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract

China has abundant crop residues ( CR E ) that could be used for bioenergy. The spatiotemporal characteristics of bioenergy production are crucial for high-efficiency use and appropriate management of bioenergy enterprises. In this study, statistical and remote-sensing data on crop yield in China were used to estimate CR E and to analyze its spatiotemporal changes between 1990 and 2010. In 2010, China’s CR E was estimated to be approximately 133.24 Mt, and it was abundant in North and Northeast China, the middle and lower reaches of the Yangtze River, and South China; CR E was scarce on the Loess and Qinghai–Tibet Plateaus. The quantity of CR E increased clearly over the 20-year analysis period, mainly from an increase in residues produced on dry land. Changes in cultivated land use clearly influenced the changes in CR E . The expansion of cultivated land, which mainly occurred in Northeast and Northwest China, increased CR E by 5.18 Mt. The loss of cultivated land, which occurred primarily in North China and the middle and lower reaches of the Yangtze River, reduced CR E by 3.55 Mt. Additionally, the interconversion of paddy fields and dry land, which occurred mostly in Northeast China, increased CR E by 0.78 Mt. The findings of this article provide important information for policy makers in formulating plans and policies for crop-residue-based bioenergy development in China, and also for commercial ventures in deciding on locations and production schedules for generation of bioenergy.

Suggested Citation

  • Xinliang Xu & Ying Fu & Shuang Li, 2013. "Spatiotemporal Changes in Crop Residues with Potential for Bioenergy Use in China from 1990 to 2010," Energies, MDPI, vol. 6(12), pages 1-17, November.
  • Handle: RePEc:gam:jeners:v:6:y:2013:i:12:p:6153-6169:d:30822
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/6/12/6153/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/6/12/6153/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Monforti, F. & Bódis, K. & Scarlat, N. & Dallemand, J.-F., 2013. "The possible contribution of agricultural crop residues to renewable energy targets in Europe: A spatially explicit study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 666-677.
    2. Mark W. Rosegrant & Tingju Zhu & Siwa Msangi & Timothy Sulser, 2008. "Global Scenarios for Biofuels: Impacts and Implications ," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 30(3), pages 495-505.
    3. Jiang, Dong & Zhuang, Dafang & Fu, Jinying & Huang, Yaohuan & Wen, Kege, 2012. "Bioenergy potential from crop residues in China: Availability and distribution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1377-1382.
    4. Hiloidhari, M. & Baruah, D.C., 2011. "Crop residue biomass for decentralized electrical power generation in rural areas (part 1): Investigation of spatial availability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1885-1892, May.
    5. Lora, E.S. & Andrade, R.V., 2009. "Biomass as energy source in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 777-788, May.
    6. Sayigh, Ali, 1999. "Renewable energy -- the way forward," Applied Energy, Elsevier, vol. 64(1-4), pages 15-30, September.
    7. Valdez-Vazquez, Idania & Acevedo-Benítez, Jorge A. & Hernández-Santiago, Cuitlahuac, 2010. "Distribution and potential of bioenergy resources from agricultural activities in Mexico," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 2147-2153, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mihail Busu, 2019. "Assessment of the Impact of Bioenergy on Sustainable Economic Development," Energies, MDPI, vol. 12(4), pages 1-11, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lohan, Shiv Kumar & Jat, H.S. & Yadav, Arvind Kumar & Sidhu, H.S. & Jat, M.L. & Choudhary, Madhu & Peter, Jyotsna Kiran & Sharma, P.C., 2018. "Burning issues of paddy residue management in north-west states of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 693-706.
    2. Bundhoo, Zumar M.A. & Mauthoor, Sumayya & Mohee, Romeela, 2016. "Potential of biogas production from biomass and waste materials in the Small Island Developing State of Mauritius," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1087-1100.
    3. Tanvir Ahmed & Bashir Ahmad, 2014. "Burning of Crop Residue and its Potential for Electricity Generation," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 53(3), pages 275-292.
    4. Algieri, Angelo & Andiloro, Serafina & Tamburino, Vincenzo & Zema, Demetrio Antonio, 2019. "The potential of agricultural residues for energy production in Calabria (Southern Italy)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 1-14.
    5. Chakraborty, Abhishek & Biswal, Anima & Pandey, Varun & Shadab, Syed & Kalyandeep, K. & Murthy, C.S. & Seshasai, M.V.R. & Rao, P.V.N. & Jain, Niveta & Sehgal, V.K. & Kaushik, Nirmala & Singh, Sanjay &, 2022. "Developing a spatial information system of biomass potential from crop residues over India: A decision support for planning and establishment of biofuel/biomass power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    6. Ji, Li-Qun, 2015. "An assessment of agricultural residue resources for liquid biofuel production in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 561-575.
    7. Ru Fang, Yan & Zhang, Silu & Zhou, Ziqiao & Shi, Wenjun & Hui Xie, Guang, 2022. "Sustainable development in China: Valuation of bioenergy potential and CO2 reduction from crop straw," Applied Energy, Elsevier, vol. 322(C).
    8. Avinash Bharti & Kunwar Paritosh & Venkata Ravibabu Mandla & Aakash Chawade & Vivekanand Vivekanand, 2021. "GIS Application for the Estimation of Bioenergy Potential from Agriculture Residues: An Overview," Energies, MDPI, vol. 14(4), pages 1-15, February.
    9. Singh, Jaswinder, 2016. "Identifying an economic power production system based on agricultural straw on regional basis in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1140-1155.
    10. Sonja Simon & Tobias Naegler & Hans Christian Gils, 2018. "Transformation towards a Renewable Energy System in Brazil and Mexico—Technological and Structural Options for Latin America," Energies, MDPI, vol. 11(4), pages 1-26, April.
    11. Wu, Bo & Wang, Yan-Wei & Dai, Yong-Hua & Song, Chao & Zhu, Qi-Li & Qin, Han & Tan, Fu-Rong & Chen, Han-Cheng & Dai, Li-Chun & Hu, Guo-Quan & He, Ming-Xiong, 2021. "Current status and future prospective of bio-ethanol industry in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    12. Mohammadi, Ali & Rafiee, Shahin & Jafari, Ali & Keyhani, Alireza & Mousavi-Avval, Seyed Hashem & Nonhebel, Sanderine, 2014. "Energy use efficiency and greenhouse gas emissions of farming systems in north Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 724-733.
    13. Roberts, Justo José & Cassula, Agnelo Marotta & Osvaldo Prado, Pedro & Dias, Rubens Alves & Balestieri, José Antonio Perrella, 2015. "Assessment of dry residual biomass potential for use as alternative energy source in the party of General Pueyrredón, Argentina," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 568-583.
    14. Sun, Yanwei & Wang, Run & Liu, Jian & Xiao, Lishan & Lin, Yanjie & Kao, William, 2013. "Spatial planning framework for biomass resources for power production at regional level: A case study for Fujian Province, China," Applied Energy, Elsevier, vol. 106(C), pages 391-406.
    15. Singh, Jaswinder, 2015. "Overview of electric power potential of surplus agricultural biomass from economic, social, environmental and technical perspective—A case study of Punjab," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 286-297.
    16. Al-Hamamre, Zayed & Saidan, Motasem & Hararah, Muhanned & Rawajfeh, Khaled & Alkhasawneh, Hussam E. & Al-Shannag, Mohammad, 2017. "Wastes and biomass materials as sustainable-renewable energy resources for Jordan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 295-314.
    17. Shirzad, Mohammad & Kazemi Shariat Panahi, Hamed & Dashti, Behrouz B. & Rajaeifar, Mohammad Ali & Aghbashlo, Mortaza & Tabatabaei, Meisam, 2019. "A comprehensive review on electricity generation and GHG emission reduction potentials through anaerobic digestion of agricultural and livestock/slaughterhouse wastes in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 571-594.
    18. Mohsen Jamali & Esmaeil Bakhshandeh & Mohammad Yaghoubi Khanghahi & Carmine Crecchio, 2021. "Metadata Analysis to Evaluate Environmental Impacts of Wheat Residues Burning on Soil Quality in Developing and Developed Countries," Sustainability, MDPI, vol. 13(11), pages 1-13, June.
    19. Brahma, Antara & Saikia, Kangkana & Hiloidhari, Moonmoon & Baruah, D.C., 2016. "GIS based planning of a biomethanation power plant in Assam, India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 596-608.
    20. Zhao, Xiqiang & Zhou, Xing & Wang, Guoxiu & Zhou, Ping & Wang, Wenlong & Song, Zhanlong, 2022. "Evaluating the effect of torrefaction on the pyrolysis of biomass and the biochar catalytic performance on dry reforming of methane," Renewable Energy, Elsevier, vol. 192(C), pages 313-325.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:6:y:2013:i:12:p:6153-6169:d:30822. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.