IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v106y2013icp391-406.html
   My bibliography  Save this article

Spatial planning framework for biomass resources for power production at regional level: A case study for Fujian Province, China

Author

Listed:
  • Sun, Yanwei
  • Wang, Run
  • Liu, Jian
  • Xiao, Lishan
  • Lin, Yanjie
  • Kao, William

Abstract

Effective spatial planning is crucial for cost-effectively and sustainably developing biomass energy resources due to the diffuse nature of biomass and high transportation cost. Using the spatial analysis technology, economic models and scenario analysis, this paper presents a spatial planning framework to identify the appropriate developing areas of biomass energy at regional level. The methodology is applied in a case study of Fujian Province, China. Firstly, spatial distribution of two kinds of biomass resources and the technical potential, i.e. the amount of power generation from agricultural and forestry residues in each supply area, were estimated by incorporating the spatial data and the statistical data. The results indicate that total technical potential of agricultural and forestry residues is estimated at 25.13TWhy−1, equivalent to approximately 19% of total electricity consumption in Fujian in 2010. In the second step, the economic analysis assesses the cost of biomass generation for each supply area on the basis of current market conditions. Ranking of the supply areas is then performed by using the priority development index (PDI), which can measure the priority of each biomass supply area by combining several influencing indicators. Finally, the selection of supply areas for power plants can be carried out according to its order in PDI until the total planed capacity in the region is met. The priority of the subregions and the corresponding cost of biomass generation for different planning scenarios can be explicitly visualized. The methodology can be applied to a wide area and can support the local authorities to define and implement a strategy for future biomass energy development.

Suggested Citation

  • Sun, Yanwei & Wang, Run & Liu, Jian & Xiao, Lishan & Lin, Yanjie & Kao, William, 2013. "Spatial planning framework for biomass resources for power production at regional level: A case study for Fujian Province, China," Applied Energy, Elsevier, vol. 106(C), pages 391-406.
  • Handle: RePEc:eee:appene:v:106:y:2013:i:c:p:391-406
    DOI: 10.1016/j.apenergy.2013.02.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261913001116
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.02.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Srirangan, Kajan & Akawi, Lamees & Moo-Young, Murray & Chou, C. Perry, 2012. "Towards sustainable production of clean energy carriers from biomass resources," Applied Energy, Elsevier, vol. 100(C), pages 172-186.
    2. Bridgwater, A. V. & Toft, A. J. & Brammer, J. G., 2002. "A techno-economic comparison of power production by biomass fast pyrolysis with gasification and combustion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(3), pages 181-246, September.
    3. Viana, H. & Cohen, Warren B. & Lopes, D. & Aranha, J., 2010. "Assessment of forest biomass for use as energy. GIS-based analysis of geographical availability and locations of wood-fired power plants in Portugal," Applied Energy, Elsevier, vol. 87(8), pages 2551-2560, August.
    4. Kinoshita, Tsuguki & Inoue, Keisuke & Iwao, Koki & Kagemoto, Hiroshi & Yamagata, Yoshiki, 2009. "A spatial evaluation of forest biomass usage using GIS," Applied Energy, Elsevier, vol. 86(1), pages 1-8, January.
    5. Baltas, A.E. & Dervos, A.N., 2012. "Special framework for the spatial planning & the sustainable development of renewable energy sources," Renewable Energy, Elsevier, vol. 48(C), pages 358-363.
    6. Jiang, Dong & Zhuang, Dafang & Fu, Jinying & Huang, Yaohuan & Wen, Kege, 2012. "Bioenergy potential from crop residues in China: Availability and distribution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1377-1382.
    7. Hiloidhari, M. & Baruah, D.C., 2011. "Crop residue biomass for decentralized electrical power generation in rural areas (part 1): Investigation of spatial availability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1885-1892, May.
    8. Fueyo, Norberto & Sanz, Yosune & Rodrigues, Marcos & Montañés, Carlos & Dopazo, César, 2011. "The use of cost-generation curves for the analysis of wind electricity costs in Spain," Applied Energy, Elsevier, vol. 88(3), pages 733-740, March.
    9. Wang, Run & Liu, Wenjuan & Xiao, Lishan & Liu, Jian & Kao, William, 2011. "Path towards achieving of China's 2020 carbon emission reduction target--A discussion of low-carbon energy policies at province level," Energy Policy, Elsevier, vol. 39(5), pages 2740-2747, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shu, Kesheng & Schneider, Uwe A. & Scheffran, Jürgen, 2017. "Optimizing the bioenergy industry infrastructure: Transportation networks and bioenergy plant locations," Applied Energy, Elsevier, vol. 192(C), pages 247-261.
    2. Wang, Xingwei & Cai, Yanpeng & Dai, Chao, 2014. "Evaluating China's biomass power production investment based on a policy benefit real options model," Energy, Elsevier, vol. 73(C), pages 751-761.
    3. Lin, Boqiang & He, Jiaxin, 2017. "Is biomass power a good choice for governments in China?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1218-1230.
    4. Avinash Bharti & Kunwar Paritosh & Venkata Ravibabu Mandla & Aakash Chawade & Vivekanand Vivekanand, 2021. "GIS Application for the Estimation of Bioenergy Potential from Agriculture Residues: An Overview," Energies, MDPI, vol. 14(4), pages 1-15, February.
    5. Lin, Boqiang & He, Jiaxin, 2016. "Learning curves for harnessing biomass power: What could explain the reduction of its cost during the expansion of China?," Renewable Energy, Elsevier, vol. 99(C), pages 280-288.
    6. Franco, Camilo & Bojesen, Mikkel & Hougaard, Jens Leth & Nielsen, Kurt, 2015. "A fuzzy approach to a multiple criteria and Geographical Information System for decision support on suitable locations for biogas plants," Applied Energy, Elsevier, vol. 140(C), pages 304-315.
    7. Zhao, Guanhan & Jiang, Peng & Zhang, Hao & Li, Lin & Ji, Tuo & Mu, Liwen & Lu, Xiaohua & Zhu, Jiahua, 2024. "Mapping out the regional low-carbon and economic biomass supply chain by aligning geographic information systems and life cycle assessment models," Applied Energy, Elsevier, vol. 369(C).
    8. Costa, Fabrício Rodrigues & Ribeiro, Carlos Antonio Alvares Soares & Marcatti, Gustavo Eduardo & Lorenzon, Alexandre Simões & Teixeira, Thaisa Ribeiro & Domingues, Getulio Fonseca & Castro, Nero Lemos, 2020. "GIS applied to location of bioenergy plants in tropical agricultural areas," Renewable Energy, Elsevier, vol. 153(C), pages 911-918.
    9. Chen, Xiaoguang, 2016. "Economic potential of biomass supply from crop residues in China," Applied Energy, Elsevier, vol. 166(C), pages 141-149.
    10. Mingming Zhang & Dequn Zhou & Hao Ding & Jingliang Jin, 2016. "Biomass Power Generation Investment in China: A Real Options Evaluation," Sustainability, MDPI, vol. 8(6), pages 1-22, June.
    11. Zhang, Xingping & Luo, Kaiyan & Tan, Qinliang, 2016. "A feedstock supply model integrating the official organization for China's biomass generation plants," Energy Policy, Elsevier, vol. 97(C), pages 276-290.
    12. Meng, Jing & Liu, Junfeng & Guo, Shan & Huang, Ye & Tao, Shu, 2016. "The impact of domestic and foreign trade on energy-related PM emissions in Beijing," Applied Energy, Elsevier, vol. 184(C), pages 853-862.
    13. Almut Güldemund & Vanessa Zeller, 2024. "Reflecting Regional Conditions in Circular Bioeconomy Scenarios: A Multi-Criteria Approach for Matching Technologies and Regions," Sustainability, MDPI, vol. 16(7), pages 1-28, April.
    14. Wang, Wenyan & Ouyang, Wei & Hao, Fanghua & Liu, Genyuan, 2017. "Temporal-spatial variation analysis of agricultural biomass and its policy implication as an alternative energy in northeastern China," Energy Policy, Elsevier, vol. 109(C), pages 337-349.
    15. Devlin, Ger & Talbot, Bruce, 2014. "Deriving cooperative biomass resource transport supply strategies in meeting co-firing energy regulations: A case for peat and wood fibre in Ireland," Applied Energy, Elsevier, vol. 113(C), pages 1700-1709.
    16. Gautam, Shuva & LeBel, Luc & Carle, Marc-André, 2017. "Supply chain model to assess the feasibility of incorporating a terminal between forests and biorefineries," Applied Energy, Elsevier, vol. 198(C), pages 377-384.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohsen Jamali & Esmaeil Bakhshandeh & Mohammad Yaghoubi Khanghahi & Carmine Crecchio, 2021. "Metadata Analysis to Evaluate Environmental Impacts of Wheat Residues Burning on Soil Quality in Developing and Developed Countries," Sustainability, MDPI, vol. 13(11), pages 1-13, June.
    2. Lourinho, Gonçalo & Brito, Paulo, 2015. "Assessment of biomass energy potential in a region of Portugal (Alto Alentejo)," Energy, Elsevier, vol. 81(C), pages 189-201.
    3. Lohan, Shiv Kumar & Jat, H.S. & Yadav, Arvind Kumar & Sidhu, H.S. & Jat, M.L. & Choudhary, Madhu & Peter, Jyotsna Kiran & Sharma, P.C., 2018. "Burning issues of paddy residue management in north-west states of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 693-706.
    4. Sultana, Arifa & Kumar, Amit, 2012. "Optimal siting and size of bioenergy facilities using geographic information system," Applied Energy, Elsevier, vol. 94(C), pages 192-201.
    5. Avinash Bharti & Kunwar Paritosh & Venkata Ravibabu Mandla & Aakash Chawade & Vivekanand Vivekanand, 2021. "GIS Application for the Estimation of Bioenergy Potential from Agriculture Residues: An Overview," Energies, MDPI, vol. 14(4), pages 1-15, February.
    6. Famoso, F. & Prestipino, M. & Brusca, S. & Galvagno, A., 2020. "Designing sustainable bioenergy from residual biomass: Site allocation criteria and energy/exergy performance indicators," Applied Energy, Elsevier, vol. 274(C).
    7. Singh, Jaswinder, 2016. "Identifying an economic power production system based on agricultural straw on regional basis in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1140-1155.
    8. Fernando López-Rodríguez & Justo García Sanz-Calcedo & Francisco J. Moral-García, 2019. "Spatial Analysis of Residual Biomass and Location of Future Storage Centers in the Southwest of Europe," Energies, MDPI, vol. 12(10), pages 1-16, May.
    9. Sánchez-García, Sandra & Canga, Elena & Tolosana, Eduardo & Majada, Juan, 2015. "A spatial analysis of woodfuel based on WISDOM GIS methodology: Multiscale approach in Northern Spain," Applied Energy, Elsevier, vol. 144(C), pages 193-203.
    10. Song, Junnian & Yang, Wei & Higano, Yoshiro & Wang, Xian’en, 2015. "Dynamic integrated assessment of bioenergy technologies for energy production utilizing agricultural residues: An input–output approach," Applied Energy, Elsevier, vol. 158(C), pages 178-189.
    11. Tanvir Ahmed & Bashir Ahmad, 2014. "Burning of Crop Residue and its Potential for Electricity Generation," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 53(3), pages 275-292.
    12. Xinliang Xu & Ying Fu & Shuang Li, 2013. "Spatiotemporal Changes in Crop Residues with Potential for Bioenergy Use in China from 1990 to 2010," Energies, MDPI, vol. 6(12), pages 1-17, November.
    13. Akhtari, Shaghaygh & Sowlati, Taraneh & Day, Ken, 2014. "The effects of variations in supply accessibility and amount on the economics of using regional forest biomass for generating district heat," Energy, Elsevier, vol. 67(C), pages 631-640.
    14. Morato, Teresa & Vaezi, Mahdi & Kumar, Amit, 2019. "Developing a framework to optimally locate biomass collection points to improve the biomass-based energy facilities locating procedure – A case study for Bolivia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 183-199.
    15. Brianna Heeley & Sanjeev Kumar Srivastava & Mohammad R. Ghaffariyan, 2019. "International assessment of bioenergy stakeholders research requirements of GIS based biomass analytics," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 65(6), pages 234-246.
    16. Garegnani, Giulia & Sacchelli, Sandro & Balest, Jessica & Zambelli, Pietro, 2018. "GIS-based approach for assessing the energy potential and the financial feasibility of run-off-river hydro-power in Alpine valleys," Applied Energy, Elsevier, vol. 216(C), pages 709-723.
    17. Ćosić, Boris & Stanić, Zoran & Duić, Neven, 2011. "Geographic distribution of economic potential of agricultural and forest biomass residual for energy use: Case study Croatia," Energy, Elsevier, vol. 36(4), pages 2017-2028.
    18. Chakraborty, Abhishek & Biswal, Anima & Pandey, Varun & Shadab, Syed & Kalyandeep, K. & Murthy, C.S. & Seshasai, M.V.R. & Rao, P.V.N. & Jain, Niveta & Sehgal, V.K. & Kaushik, Nirmala & Singh, Sanjay &, 2022. "Developing a spatial information system of biomass potential from crop residues over India: A decision support for planning and establishment of biofuel/biomass power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    19. Singh, Jaswinder, 2015. "Overview of electric power potential of surplus agricultural biomass from economic, social, environmental and technical perspective—A case study of Punjab," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 286-297.
    20. Kala, L.D. & Subbarao, P.M.V., 2018. "Estimation of pine needle availability in the Central Himalayan state of Uttarakhand, India for use as energy feedstock," Renewable Energy, Elsevier, vol. 128(PA), pages 9-19.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:106:y:2013:i:c:p:391-406. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.