IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v153y2022ics1364032121010601.html
   My bibliography  Save this article

Sustainable applications of rice feedstock in agro-environmental and construction sectors: A global perspective

Author

Listed:
  • Shaheen, Sabry M.
  • Antoniadis, Vasileios
  • Shahid, Muhammad
  • Yang, Yi
  • Abdelrahman, Hamada
  • Zhang, Tao
  • Hassan, Noha E.E.
  • Bibi, Irshad
  • Niazi, Nabeel Khan
  • Younis, Sherif A.
  • Almazroui, Mansour
  • Tsang, Yiu Fai
  • Sarmah, Ajit K.
  • Kim, Ki-Hyun
  • Rinklebe, Jörg

Abstract

Rice is second only to maize among the world's most important cereal crops, with a global harvested area of approximately 158 million hectares and an annual production of more than 700 million tonnes as paddy rice. At this scale, rice production generates vast amounts of waste in the form of straw, husk, and bran. Because of high cellulose, lignin, and silica contents, rice biowaste (RB) can be used to produce rice biochar (RBC) and rice compost (RC). Furthermore, RB can be used as sorbents, soil conditioners, bricks/concrete blocks, flat steel products, and biofuels, all of which make significant contributions to meeting United Nations Sustainable Development Goals (UNSDGs). Although previous reviews have explored individual applications of rice feedstocks, inadequate attention has been paid to multifunctional values and potential multi-utilities. Here, we offer a comprehensive review of RBC and RC with respect to: (1) preparation and characterization; (2) applications as soil conditioners and organic fertilizers and their effects on soil-carbon sequestration; (3) remediation of toxic element–contaminated soils and water; (4) removal of colors, dyes, endocrine-disrupting chemicals, personal-care products, and residual pesticides from water; and (5) applications in the construction industry. Specifically, we describe the opportunities for the sustainable use of RBC and RC in the management of contaminated soils and water as well as the construction industry. Overall, this review is expected to lengthen the list of possible multifunctional applications of RBC and RC.

Suggested Citation

  • Shaheen, Sabry M. & Antoniadis, Vasileios & Shahid, Muhammad & Yang, Yi & Abdelrahman, Hamada & Zhang, Tao & Hassan, Noha E.E. & Bibi, Irshad & Niazi, Nabeel Khan & Younis, Sherif A. & Almazroui, Mans, 2022. "Sustainable applications of rice feedstock in agro-environmental and construction sectors: A global perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
  • Handle: RePEc:eee:rensus:v:153:y:2022:i:c:s1364032121010601
    DOI: 10.1016/j.rser.2021.111791
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121010601
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111791?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rouches, E. & Herpoël-Gimbert, I. & Steyer, J.P. & Carrere, H., 2016. "Improvement of anaerobic degradation by white-rot fungi pretreatment of lignocellulosic biomass: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 179-198.
    2. Agnieszka E. Latawiec & Jolanta B. Królczyk & Maciej Kuboń & Katarzyna Szwedziak & Adam Drosik & Ewa Polańczyk & Katarzyna Grotkiewicz & Bernardo B. N. Strassburg, 2017. "Willingness to Adopt Biochar in Agriculture: The Producer’s Perspective," Sustainability, MDPI, vol. 9(4), pages 1-13, April.
    3. Pode, Ramchandra, 2016. "Potential applications of rice husk ash waste from rice husk biomass power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1468-1485.
    4. Monforti, F. & Lugato, E. & Motola, V. & Bodis, K. & Scarlat, N. & Dallemand, J.-F., 2015. "Optimal energy use of agricultural crop residues preserving soil organic carbon stocks in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 519-529.
    5. Jung, Sungyup & Kwon, Dohee & Park, Young-Kwon & Lee, Kyun Ho & Kwon, Eilhann E., 2020. "Power generation using rice husk derived fuels from CO2-assisted catalytic pyrolysis over Co/Al2O3," Energy, Elsevier, vol. 206(C).
    6. Ali, Ghaffar & Bashir, Muhammad Khalid & Ali, Hassan & Bashir, Muhammad Hamid, 2016. "Utilization of rice husk and poultry wastes for renewable energy potential in Pakistan: An economic perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 25-29.
    7. Lohan, Shiv Kumar & Jat, H.S. & Yadav, Arvind Kumar & Sidhu, H.S. & Jat, M.L. & Choudhary, Madhu & Peter, Jyotsna Kiran & Sharma, P.C., 2018. "Burning issues of paddy residue management in north-west states of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 693-706.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Qiaoqiao & Liu, Zhenyu & Wu, Ta Yeong & Zhang, Lian, 2023. "Furfural from pyrolysis of agroforestry waste: Critical factors for utilisation of C5 and C6 sugars," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    2. Mario Paguay & Juan Diego Febres & Eduardo Valarezo, 2023. "Occupational Accidents in Ecuador: An Approach from the Construction and Manufacturing Industries," Sustainability, MDPI, vol. 15(16), pages 1-14, August.
    3. Valenzuela, Marian & Ciudad, Gustavo & Cárdenas, Juan Pablo & Medina, Carlos & Salas, Alexis & Oñate, Angelo & Pincheira, Gonzalo & Attia, Shady & Tuninetti, Víctor, 2024. "Towards the development of performance-efficient compressed earth blocks from industrial and agro-industrial by-products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 194(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Enhai & Liu, Shengyong, 2017. "Process optimization and study of biogas fermentation with a mixture of duck manure and straw," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 439-444.
    2. Steven, Soen & Restiawaty, Elvi & Bindar, Yazid, 2021. "Routes for energy and bio-silica production from rice husk: A comprehensive review and emerging prospect," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    3. Arshad, Muhammad & Bano, Ijaz & Khan, Nasrullah & Shahzad, Mirza Imran & Younus, Muhammad & Abbas, Mazhar & Iqbal, Munawar, 2018. "Electricity generation from biogas of poultry waste: An assessment of potential and feasibility in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1241-1246.
    4. Jenol, M.A. & Chu, P.H. & Ramle, I.K. & Joyce, L.J.W. & Lai-Yee, P. & Ibrahim, M.F. & Alitheen, N.B. & Osman, M.A. & Abd Gani, S. & Abd-Aziz, S., 2024. "Feasibility of agricultural biomass in Southeast Asia for enzymes production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    5. Zhang, Huaiwen & Yao, Yiqing & Deng, Jun & Zhang, Jian-Li & Qiu, Yaojing & Li, Guofu & Liu, Jian, 2022. "Hydrogen production via anaerobic digestion of coal modified by white-rot fungi and its application benefits analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    6. Soha, Tamás & Papp, Luca & Csontos, Csaba & Munkácsy, Béla, 2021. "The importance of high crop residue demand on biogas plant site selection, scaling and feedstock allocation – A regional scale concept in a Hungarian study area," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    7. Magotra, Verjesh Kumar & Lee, S.J. & Inamdar, Akbar I. & Kang, T.W. & Walke, Pundalik D. & Hogan, Stephanie C. & Kim, D.Y. & Saratale, Ganesh D. & Saratale, Rijuta G. & Purkayastha, Anwesha & Jeon, H., 2021. "Development of white brick fuel cell using rice husk ash agricultural waste for sustainable power generation: A novel approach," Renewable Energy, Elsevier, vol. 179(C), pages 1875-1883.
    8. Yassine Charabi & Sabah Abdul-Wahab & Abdul Majeed Al-Mahruqi & Selma Osman & Isra Osman, 2022. "The potential estimation and cost analysis of wind energy production in Oman," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 5917-5937, April.
    9. Maria Alexandropoulou & Georgia Antonopoulou & Ioanna Ntaikou & Gerasimos Lyberatos, 2017. "Fungal Pretreatment of Willow Sawdust with Abortiporus biennis for Anaerobic Digestion: Impact of an External Nitrogen Source," Sustainability, MDPI, vol. 9(1), pages 1-14, January.
    10. Kwon, Dohee & Kim, Youngju & Choi, Dongho & Jung, Sungyup & Tsang, Yiu Fai & Kwon, Eilhann E., 2024. "Enhanced thermochemical valorization of coconut husk through carbon dioxide integration: A sustainable approach to agricultural residue utilization," Applied Energy, Elsevier, vol. 369(C).
    11. Venturini, Giada & Pizarro-Alonso, Amalia & Münster, Marie, 2019. "How to maximise the value of residual biomass resources: The case of straw in Denmark," Applied Energy, Elsevier, vol. 250(C), pages 369-388.
    12. Olabi, A.G. & Wilberforce, Tabbi & Abdelkareem, Mohammad Ali, 2021. "Fuel cell application in the automotive industry and future perspective," Energy, Elsevier, vol. 214(C).
    13. Tamang, Phurba & Tyagi, Vinay Kumar & Gunjyal, Neelam & Rahmani, Ali Mohammad & Singh, Rajesh & Kumar, Pradeep & Ahmed, Banafsha & Tyagi, Pooja & Banu, Rajesh & Varjani, Sunita & Kazmi, A.A., 2023. "Free nitrous acid (FNA) pretreatment enhances biomethanation of lignocellulosic agro-waste (wheat straw)," Energy, Elsevier, vol. 264(C).
    14. Andrade Díaz, Christhel & Albers, Ariane & Zamora-Ledezma, Ezequiel & Hamelin, Lorie, 2024. "The interplay between bioeconomy and the maintenance of long-term soil organic carbon stock in agricultural soils: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    15. Iwona Gruss & Jacek P. Twardowski & Agnieszka Latawiec & Jolanta Królczyk & Agnieszka Medyńska-Juraszek, 2019. "The Effect of Biochar Used as Soil Amendment on Morphological Diversity of Collembola," Sustainability, MDPI, vol. 11(18), pages 1-13, September.
    16. Ru Fang, Yan & Zhang, Silu & Zhou, Ziqiao & Shi, Wenjun & Hui Xie, Guang, 2022. "Sustainable development in China: Valuation of bioenergy potential and CO2 reduction from crop straw," Applied Energy, Elsevier, vol. 322(C).
    17. Onu Onu Olughu & Lope G. Tabil & Tim Dumonceaux & Edmund Mupondwa & Duncan Cree, 2021. "Comparative Study on Quality of Fuel Pellets from Switchgrass Treated with Different White-Rot Fungi," Energies, MDPI, vol. 14(22), pages 1-19, November.
    18. Hamid Khatibi & Akbar Hassani, 2021. "Effective management and composting of organic wastes using new developed consortia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 16891-16910, November.
    19. Jha, Gaurav & Soren, S., 2017. "Study on applicability of biomass in iron ore sintering process," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 399-407.
    20. Massoud Sofi & Ylias Sabri & Zhiyuan Zhou & Priyan Mendis, 2019. "Transforming Municipal Solid Waste into Construction Materials," Sustainability, MDPI, vol. 11(9), pages 1-22, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:153:y:2022:i:c:s1364032121010601. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.