IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v265y2023ics0360544222032480.html
   My bibliography  Save this article

Influence of graphite/alumina on co-pyrolysis of Chlorella vulgaris and polypropylene for producing bio-oil

Author

Listed:
  • Chen, Chunxiang
  • Zhao, Jian
  • Wei, Yixue
  • Huang, Xiaodong
  • Lu, Wei
  • Fan, Dianzhao
  • Bi, Yingxin
  • Qiu, Hongfu

Abstract

The effects of Graphite/Alumina (GP/Al2O3) compound additives with different addition amounts (10%, 20%, 30% and 40%) and different mixing ratios (10:0, 7:3, 5:5, 3:7 and 0:10) on co-pyrolysis characteristics, product yield and bio-oil components of Chlorella vulgaris (CV) and polypropylene (PP) were studied by microwave thermogravimetry and GC-MS. The results indicated that compared with the C8P2 (CV:PP = 8:2) group, 30% G10A0 (GP:Al2O3 = 10:0) could greatly improve pyrolysis efficiency, but the contents of hydrocarbons and alcohols in bio-oil decreased and the content of acids increased. 40% G0A10 could increase the content of hydrocarbons and decrease the content of phenols in bio-oil, but the yield of bio-oil was 3.16% lower than that of C8P2 group. For 40% compound additive groups, GP/Al2O3 could increase the production of bio-oil without increasing energy consumption, and the contents of hydrocarbons and alcohols in bio-oils increased. The maximum contents of hydrocarbons and alcohols appeared in the 40% G7A3 group, 29.56% and 34.60% respectively. In addition, alkyl-cyclohexane accounted for 65.95% of hydrocarbons in 40% G7A3 group. Therefore, the content of alkyl-cyclohexane can be controlled purposefully to be used in chemical fields such as organic synthesis and preparation of antistatic coatings, so as to expand the application of bio-oil.

Suggested Citation

  • Chen, Chunxiang & Zhao, Jian & Wei, Yixue & Huang, Xiaodong & Lu, Wei & Fan, Dianzhao & Bi, Yingxin & Qiu, Hongfu, 2023. "Influence of graphite/alumina on co-pyrolysis of Chlorella vulgaris and polypropylene for producing bio-oil," Energy, Elsevier, vol. 265(C).
  • Handle: RePEc:eee:energy:v:265:y:2023:i:c:s0360544222032480
    DOI: 10.1016/j.energy.2022.126362
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222032480
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.126362?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Chunxiang & Qi, Qianhao & Huang, Dengchang & Zeng, Tianyang & Bu, Xiaoyan & Huang, Yuting & Huang, Haozhong, 2021. "Effect of additive mixture on microwave-assisted catalysis pyrolysis of microalgae," Energy, Elsevier, vol. 229(C).
    2. Chen, Chunxiang & Fan, Dianzhao & Zhao, Jian & Qi, Qianhao & Huang, Xiaodong & Zeng, Tianyang & Bi, Yingxin, 2022. "Study on microwave-assisted co-pyrolysis and bio-oil of Chlorella vulgaris with high-density polyethylene under activated carbon," Energy, Elsevier, vol. 247(C).
    3. Luo, Juan & Sun, Shichang & Chen, Xing & Lin, Junhao & Ma, Rui & Zhang, Rui & Fang, Lin, 2021. "In-depth exploration of the energy utilization and pyrolysis mechanism of advanced continuous microwave pyrolysis," Applied Energy, Elsevier, vol. 292(C).
    4. Park, Ki-Bum & Jeong, Yong-Seong & Guzelciftci, Begum & Kim, Joo-Sik, 2019. "Characteristics of a new type continuous two-stage pyrolysis of waste polyethylene," Energy, Elsevier, vol. 166(C), pages 343-351.
    5. Li, Fanghua & Srivatsa, Srikanth Chakravartula & Bhattacharya, Sankar, 2019. "A review on catalytic pyrolysis of microalgae to high-quality bio-oil with low oxygeneous and nitrogenous compounds," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 481-497.
    6. Jin, Xuanjun & Lee, Jae Hoon & Choi, Joon Weon, 2022. "Catalytic co-pyrolysis of woody biomass with waste plastics: Effects of HZSM-5 and pyrolysis temperature on producing high-value pyrolytic products and reducing wax formation," Energy, Elsevier, vol. 239(PA).
    7. Pang, Yunji & Wu, Yuting & Chen, Yisheng & Luo, Fuliang & Chen, Junjun, 2020. "Degradation effect of Ce/Al2O3 catalyst on pyrolysis volatility of pine," Renewable Energy, Elsevier, vol. 162(C), pages 134-143.
    8. Song, Zhanlong & Yang, Yaqing & Sun, Jing & Zhao, Xiqiang & Wang, Wenlong & Mao, Yanpeng & Ma, Chunyuan, 2017. "Effect of power level on the microwave pyrolysis of tire powder," Energy, Elsevier, vol. 127(C), pages 571-580.
    9. Chen, Chunxiang & Huang, Dengchang & Bu, Xiaoyan & Huang, Yuting & Tang, Jun & Guo, Chenxu & Yang, Shengxiong & Huang, Haozhong, 2020. "Microwave-assisted catalytic pyrolysis of Dunaliella salina using different compound additives," Renewable Energy, Elsevier, vol. 149(C), pages 806-815.
    10. Jung, Sungyup & Kwon, Dohee & Park, Young-Kwon & Lee, Kyun Ho & Kwon, Eilhann E., 2020. "Power generation using rice husk derived fuels from CO2-assisted catalytic pyrolysis over Co/Al2O3," Energy, Elsevier, vol. 206(C).
    11. Benedek, József & Sebestyén, Tihamér-Tibor & Bartók, Blanka, 2018. "Evaluation of renewable energy sources in peripheral areas and renewable energy-based rural development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 516-535.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Zhang & Ahmad, Muhammad Sajjad & Shen, Boxiong & Li, Yingna & Ibrahim, Muhammad & Bokhari, Awais & Klemeš, Jiří Jaromír, 2023. "Activated waste cotton cellulose as renewable fuel and value-added chemicals: Thermokinetic analysis, coupled pyrolysis with gas chromatography and mass spectrometry," Energy, Elsevier, vol. 283(C).
    2. Krishnamoorthy, Amarnath & Rodriguez, Cristina & Durrant, Andy, 2023. "Optimisation of ultrasonication pretreatment on microalgae Chlorella Vulgaris & Nannochloropsis Oculata for lipid extraction in biodiesel production," Energy, Elsevier, vol. 278(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Longzhi & Tan, Yongdong & Sun, Jifu & Zhang, Yue & Zhang, Lianjie & Deng, Yue & Cai, Dongqiang & Song, Zhanlong & Zou, Guifu & Bai, Yonghui, 2021. "Characteristics and kinetic analysis of pyrolysis of forestry waste promoted by microwave-metal interaction," Energy, Elsevier, vol. 232(C).
    2. Li, Longzhi & Cai, Dongqiang & Zhang, Lianjie & Zhang, Yue & Zhao, Zhiyang & Zhang, Zhonglei & Sun, Jifu & Tan, Yongdong & Zou, Guifu, 2023. "Synergistic effects during pyrolysis of binary mixtures of biomass components using microwave-assisted heating coupled with iron base tip-metal," Renewable Energy, Elsevier, vol. 203(C), pages 312-322.
    3. Chen, Chunxiang & Fan, Dianzhao & Zhao, Jian & Qi, Qianhao & Huang, Xiaodong & Zeng, Tianyang & Bi, Yingxin, 2022. "Study on microwave-assisted co-pyrolysis and bio-oil of Chlorella vulgaris with high-density polyethylene under activated carbon," Energy, Elsevier, vol. 247(C).
    4. Li, Longzhi & Cao, Kangqi & Cai, Dongqiang & Zhang, Zhonglei & Zhao, Zhiyang & Yu, Miao & Zhang, Lianjie & Zhang, Qiang & Zou, Guifu & Wang, Cuiping, 2023. "Influences of iron additives on microwave-assisted pyrolysis of woody biomass and microwave-induced discharge with spherical bio-char," Energy, Elsevier, vol. 276(C).
    5. Chen, Chunxiang & Wei, Yixue & Wei, Guangsheng & Qiu, Song & Yang, Gaixiu & Bi, Yingxin, 2023. "Microwave Co-pyrolysis of mulberry branches and Chlorella vulgaris under carbon material additives," Energy, Elsevier, vol. 284(C).
    6. Percy, A. Jemila & Edwin, M., 2023. "Studies on the performance and emission characteristics of a dual fuel VCR engine using producer gas as secondary fuel: An optimization approach using response surface methodology," Energy, Elsevier, vol. 263(PA).
    7. Nawaz, Ahmad & Razzak, Shaikh Abdur, 2024. "Co-pyrolysis of biomass and different plastic waste to reduce hazardous waste and subsequent production of energy products: A review on advancement, synergies, and future prospects," Renewable Energy, Elsevier, vol. 224(C).
    8. De Toni, Andrea & Vizzarri, Matteo & Di Febbraro, Mirko & Lasserre, Bruno & Noguera, Joan & Di Martino, Paolo, 2021. "Aligning Inner Peripheries with rural development in Italy: Territorial evidence to support policy contextualization," Land Use Policy, Elsevier, vol. 100(C).
    9. Wang, Jia & Wen, Mengyuan & Ren, Jurong & La, Xinru & Meng, Xianzhi & Yuan, Xiangzhou & Ragauskas, Arthur J. & Jiang, Jianchun, 2024. "Tailoring microwave frequencies for high-efficiency hydrogen production from biomass," Energy, Elsevier, vol. 297(C).
    10. Yousef, Samy & Eimontas, Justas & Striūgas, Nerijus & Abdelnaby, Mohammed Ali, 2022. "Gasification kinetics of char derived from metallised food packaging plastics waste pyrolysis," Energy, Elsevier, vol. 239(PB).
    11. Pashchenko, Dmitry, 2023. "Hydrogen-rich gas as a fuel for the gas turbines: A pathway to lower CO2 emission," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    12. Onwuemezie, Linus & Gohari Darabkhani, Hamidreza, 2024. "Oxy-hydrogen, solar and wind assisted hydrogen (H2) recovery from municipal plastic waste (MPW) and saltwater electrolysis for better environmental systems and ocean cleanup," Energy, Elsevier, vol. 301(C).
    13. Sun, Jiaman & Luo, Juan & Lin, Junhao & Ma, Rui & Sun, Shichang & Fang, Lin & Li, Haowen, 2022. "Study of co-pyrolysis endpoint and product conversion of plastic and biomass using microwave thermogravimetric technology," Energy, Elsevier, vol. 247(C).
    14. Tian, Beile & Mao, Songbo & Guo, Feiqiang & Bai, Jiaming & Shu, Rui & Qian, Lin & Liu, Qi, 2022. "Monolithic biochar-supported cobalt-based catalysts with high-activity and superior-stability for biomass tar reforming," Energy, Elsevier, vol. 242(C).
    15. Park, Ki-Bum & Choi, Min-Jun & Chae, Da-Yeong & Jung, Jaeheum & Kim, Joo-Sik, 2022. "Separate two-step and continuous two-stage pyrolysis of a waste plastic mixture to produce a chlorine-depleted oil," Energy, Elsevier, vol. 244(PA).
    16. Kim, Jae-Kyung & Park, Ki-Bum & Kim, Do Kyoung & Song, Seung-Ho & Kim, Joo-Sik, 2024. "Direct production of olefins from waste plastic using a pyrolysis and fluid catalytic cracking integrated process: Part 1. study on the production and analysis of waxy oil obtained using a new type of," Energy, Elsevier, vol. 306(C).
    17. Kwon, Dohee & Kim, Youngju & Choi, Dongho & Jung, Sungyup & Tsang, Yiu Fai & Kwon, Eilhann E., 2024. "Enhanced thermochemical valorization of coconut husk through carbon dioxide integration: A sustainable approach to agricultural residue utilization," Applied Energy, Elsevier, vol. 369(C).
    18. Olabi, A.G. & Wilberforce, Tabbi & Abdelkareem, Mohammad Ali, 2021. "Fuel cell application in the automotive industry and future perspective," Energy, Elsevier, vol. 214(C).
    19. Fan, Liangliang & Liu, Lei & Xiao, Zhiguo & Su, Zheyang & Huang, Pei & Peng, Hongyu & Lv, Sen & Jiang, Haiwei & Ruan, Roger & Chen, Paul & Zhou, Wenguang, 2021. "Comparative study of continuous-stirred and batch microwave pyrolysis of linear low-density polyethylene in the presence/absence of HZSM-5," Energy, Elsevier, vol. 228(C).
    20. Chen, Yuxiang & Li, Chao & Zhang, Lijun & Zhang, Shu & Xiang, Jun & Hu, Song & Wang, Yi & Hu, Xun, 2024. "Varied directions of heat flow and emission of volatiles impact evolution of products in pyrolysis of wet and dry pine needles," Renewable Energy, Elsevier, vol. 226(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:265:y:2023:i:c:s0360544222032480. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.