IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v70y2014icp204-211.html
   My bibliography  Save this article

Thermo-economic triple-objective optimization of a solar chimney power plant using genetic algorithms

Author

Listed:
  • Gholamalizadeh, Ehsan
  • Kim, Man-Hoe

Abstract

A triple-objective design method was developed for a solar chimney power plant system that simultaneously optimizes the expenditure, total efficiency, and power output. A multi-objective genetic algorithm was used to obtain the best combination of geometric parameters of the power plant. The following design parameters were selected: collector radius, chimney height, and chimney diameter. Two different solar chimney power plant configurations were considered: the Kerman pilot power plant and Manzanares prototype power plant. A set of possible optimal solutions (Pareto optimal set) was obtained. Based on the optimal solutions, the best configuration for each power plant was selected. The performance and expenditure of the optimal solutions and the built power plants were compared. The results showed that the increment of the power output was higher than the increment of the expenditure in the optimal configuration. A parametric study was conducted to evaluate the effects of changing design parameters on different objective functions. This paper provides a very useful design and optimization methodology for solar chimney power plant systems.

Suggested Citation

  • Gholamalizadeh, Ehsan & Kim, Man-Hoe, 2014. "Thermo-economic triple-objective optimization of a solar chimney power plant using genetic algorithms," Energy, Elsevier, vol. 70(C), pages 204-211.
  • Handle: RePEc:eee:energy:v:70:y:2014:i:c:p:204-211
    DOI: 10.1016/j.energy.2014.03.115
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421400379X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.03.115?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dai, Y.J & Huang, H.B & Wang, R.Z, 2003. "Case study of solar chimney power plants in Northwestern regions of China," Renewable Energy, Elsevier, vol. 28(8), pages 1295-1304.
    2. Gholamalizadeh, Ehsan & Kim, Man-Hoe, 2014. "Three-dimensional CFD analysis for simulating the greenhouse effect in solar chimney power plants using a two-band radiation model," Renewable Energy, Elsevier, vol. 63(C), pages 498-506.
    3. Koonsrisuk, Atit, 2012. "Mathematical modeling of sloped solar chimney power plants," Energy, Elsevier, vol. 47(1), pages 582-589.
    4. Nizetic, S. & Ninic, N. & Klarin, B., 2008. "Analysis and feasibility of implementing solar chimney power plants in the Mediterranean region," Energy, Elsevier, vol. 33(11), pages 1680-1690.
    5. Koonsrisuk, Atit & Chitsomboon, Tawit, 2013. "Effects of flow area changes on the potential of solar chimney power plants," Energy, Elsevier, vol. 51(C), pages 400-406.
    6. Gholamalizadeh, E. & Mansouri, S.H., 2013. "A comprehensive approach to design and improve a solar chimney power plant: A special case – Kerman project," Applied Energy, Elsevier, vol. 102(C), pages 975-982.
    7. Koonsrisuk, Atit & Chitsomboon, Tawit, 2013. "Mathematical modeling of solar chimney power plants," Energy, Elsevier, vol. 51(C), pages 314-322.
    8. Chergui, Toufik & Larbi, Salah & Bouhdjar, Amor, 2010. "Thermo-hydrodynamic aspect analysis of flows in solar chimney power plants--A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(5), pages 1410-1418, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sedighi, Ali Asghar & Deldoost, Zeynab & Karambasti, Bahram Mahjoob, 2020. "Effect of thermal energy storage layer porosity on performance of solar chimney power plant considering turbine pressure drop," Energy, Elsevier, vol. 194(C).
    2. Hu, Siyang & Leung, Dennis Y.C. & Chan, John C.Y., 2017. "Impact of the geometry of divergent chimneys on the power output of a solar chimney power plant," Energy, Elsevier, vol. 120(C), pages 1-11.
    3. Guo, Sisi & Liu, Pei & Li, Zheng, 2016. "Identification and isolability of multiple gross errors in measured data for power plants," Energy, Elsevier, vol. 114(C), pages 177-187.
    4. Gholamalizadeh, Ehsan & Kim, Man-Hoe, 2016. "CFD (computational fluid dynamics) analysis of a solar-chimney power plant with inclined collector roof," Energy, Elsevier, vol. 107(C), pages 661-667.
    5. Habibollahzade, Ali, 2019. "Employing photovoltaic/thermal panels as a solar chimney roof: 3E analyses and multi-objective optimization," Energy, Elsevier, vol. 166(C), pages 118-130.
    6. Mahmoudimehr, Javad & Sebghati, Parvin, 2019. "A novel multi-objective Dynamic Programming optimization method: Performance management of a solar thermal power plant as a case study," Energy, Elsevier, vol. 168(C), pages 796-814.
    7. Murena, Fabio & Gaggiano, Imma & Mele, Benedetto, 2022. "Fluid dynamic performances of a solar chimney plant: Analysis of experimental data and CFD modelling," Energy, Elsevier, vol. 249(C).
    8. Ehsan Gholamalizadeh & Jae Dong Chung, 2017. "A Comparative Study of CFD Models of a Real Wind Turbine in Solar Chimney Power Plants," Energies, MDPI, vol. 10(10), pages 1-11, October.
    9. Zuo, Lu & Yan, Ziyang & Dai, Pengzhan & Zhou, Tian & Qu, Bo & Yuan, Yue & Ge, Yunting, 2022. "Experimental research on the operation characteristics of solar chimney power plant combined with distillation (SCPPCD)," Applied Energy, Elsevier, vol. 326(C).
    10. Maia, Cristiana Brasil & Ferreira, André Guimarães & Cabezas-Gómez, Luben & de Oliveira Castro Silva, Janaína & de Morais Hanriot, Sérgio, 2017. "Thermodynamic analysis of the drying process of bananas in a small-scale solar updraft tower in Brazil," Renewable Energy, Elsevier, vol. 114(PB), pages 1005-1012.
    11. Yuji Ohya & Masaki Wataka & Koichi Watanabe & Takanori Uchida, 2016. "Laboratory Experiment and Numerical Analysis of a New Type of Solar Tower Efficiently Generating a Thermal Updraft," Energies, MDPI, vol. 9(12), pages 1-14, December.
    12. Vieira, R.S. & Petry, A.P. & Rocha, L.A.O. & Isoldi, L.A. & dos Santos, E.D., 2017. "Numerical evaluation of a solar chimney geometry for different ground temperatures by means of constructal design," Renewable Energy, Elsevier, vol. 109(C), pages 222-234.
    13. Ming, Tingzhen & Wu, Yongjia & de_Richter, Renaud K. & Liu, Wei & Sherif, S.A., 2017. "Solar updraft power plant system: A brief review and a case study on a new system with radial partition walls in its collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 472-487.
    14. Zuo, Lu & Liu, Zihan & Dai, Pengzhan & Qu, Ning & Ding, Ling & Zheng, Yuan & Ge, Yunting, 2021. "Economic performance evaluation of the wind supercharging solar chimney power plant combining desalination and waste heat after parameter optimization," Energy, Elsevier, vol. 227(C).
    15. Ehsan Gholamalizadeh & Man-Hoe Kim, 2016. "Multi-Objective Optimization of a Solar Chimney Power Plant with Inclined Collector Roof Using Genetic Algorithm," Energies, MDPI, vol. 9(11), pages 1-14, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kasaeian, A.B. & Molana, Sh. & Rahmani, K. & Wen, D., 2017. "A review on solar chimney systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 954-987.
    2. Gholamalizadeh, Ehsan & Kim, Man-Hoe, 2016. "CFD (computational fluid dynamics) analysis of a solar-chimney power plant with inclined collector roof," Energy, Elsevier, vol. 107(C), pages 661-667.
    3. Hu, Siyang & Leung, Dennis Y.C. & Chen, Michael Z.Q. & Chan, John C.Y., 2016. "Effect of guide wall on the potential of a solar chimney power plant," Renewable Energy, Elsevier, vol. 96(PA), pages 209-219.
    4. Ehsan Gholamalizadeh & Man-Hoe Kim, 2016. "Multi-Objective Optimization of a Solar Chimney Power Plant with Inclined Collector Roof Using Genetic Algorithm," Energies, MDPI, vol. 9(11), pages 1-14, November.
    5. Maia, C.B. & Castro Silva, J.O. & Cabezas-Gómez, L. & Hanriot, S.M. & Ferreira, A.G., 2013. "Energy and exergy analysis of the airflow inside a solar chimney," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 350-361.
    6. Setareh, Milad, 2021. "Comprehensive mathematical study on solar chimney powerplant," Renewable Energy, Elsevier, vol. 175(C), pages 470-485.
    7. Ming, Tingzhen & Wu, Yongjia & de_Richter, Renaud K. & Liu, Wei & Sherif, S.A., 2017. "Solar updraft power plant system: A brief review and a case study on a new system with radial partition walls in its collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 472-487.
    8. Ehsan Gholamalizadeh & Jae Dong Chung, 2017. "A Comparative Study of CFD Models of a Real Wind Turbine in Solar Chimney Power Plants," Energies, MDPI, vol. 10(10), pages 1-11, October.
    9. Zhou, Xinping & Wang, Fang & Ochieng, Reccab M., 2010. "A review of solar chimney power technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2315-2338, October.
    10. Okoye, Chiemeka Onyeka & Taylan, Onur, 2017. "Performance analysis of a solar chimney power plant for rural areas in Nigeria," Renewable Energy, Elsevier, vol. 104(C), pages 96-108.
    11. Hu, Siyang & Leung, Dennis Y.C. & Chan, John C.Y., 2017. "Numerical modelling and comparison of the performance of diffuser-type solar chimneys for power generation," Applied Energy, Elsevier, vol. 204(C), pages 948-957.
    12. Arijit A. Ganguli & Sagar S. Deshpande & Aniruddha B. Pandit, 2021. "CFD Simulations for Performance Enhancement of a Solar Chimney Power Plant (SCPP) and Techno-Economic Feasibility for a 5 MW SCPP in an Indian Context," Energies, MDPI, vol. 14(11), pages 1-28, June.
    13. Abedi, Mahyar & Tan, Xu & Klausner, James F. & Bénard, Andre, 2023. "Solar desalination chimneys: Investigation on the feasibility of integrating solar chimneys with humidification–dehumidification systems," Renewable Energy, Elsevier, vol. 202(C), pages 88-102.
    14. A Jameei & P Akbarzadeh & H Zolfagharzadeh & SR Eghbali, 2019. "Numerical study of the influence of geometric form of chimney on the performance of a solar updraft tower power plant," Energy & Environment, , vol. 30(4), pages 685-706, June.
    15. Yuji Ohya & Masaki Wataka & Koichi Watanabe & Takanori Uchida, 2016. "Laboratory Experiment and Numerical Analysis of a New Type of Solar Tower Efficiently Generating a Thermal Updraft," Energies, MDPI, vol. 9(12), pages 1-14, December.
    16. Koonsrisuk, Atit & Chitsomboon, Tawit, 2013. "Mathematical modeling of solar chimney power plants," Energy, Elsevier, vol. 51(C), pages 314-322.
    17. Nirmalendu Biswas & Dipak Kumar Mandal & Sharmistha Bose & Nirmal K. Manna & Ali Cemal Benim, 2023. "Experimental Treatment of Solar Chimney Power Plant—A Comprehensive Review," Energies, MDPI, vol. 16(17), pages 1-41, August.
    18. Ming, Tingzhen & Wang, Xinjiang & de Richter, Renaud Kiesgen & Liu, Wei & Wu, Tianhua & Pan, Yuan, 2012. "Numerical analysis on the influence of ambient crosswind on the performance of solar updraft power plant system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5567-5583.
    19. Milani Shirvan, Kamel & Mirzakhanlari, Soroush & Mamourian, Mojtaba & Kalogirou, Soteris A., 2017. "Optimization of effective parameters on solar updraft tower to achieve potential maximum power output: A sensitivity analysis and numerical simulation," Applied Energy, Elsevier, vol. 195(C), pages 725-737.
    20. Maia, Cristiana Brasil & Castro Silva, Janaína de Oliveira, 2022. "Thermodynamic assessment of a small-scale solar chimney," Renewable Energy, Elsevier, vol. 186(C), pages 35-50.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:70:y:2014:i:c:p:204-211. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.