IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v90y2018icp104-119.html
   My bibliography  Save this article

Concentrating solar power technologies for solar thermal grid electricity in Nigeria: A review

Author

Listed:
  • Ogunmodimu, Olumide
  • Okoroigwe, Edmund C.

Abstract

Grid electricity generation in Nigeria has been unstable for a long time now. With respect to her continued dependence on oil and gas and seasonal variations on water level for hydropower, immediate reliable and steady electricity generation in the country is not guaranteed. Incorporating alternative source of energy like solar is a solution. Solar Chimney technology is not yet technically and economically mature, as investment on it is still low, thereby posing more financial risks at least at the megawatt capacity. Photovoltaic and Solar Thermal technologies are technically and economically more established, but they can only ensure 24-h power supply with the aid of energy storage systems. Solar thermal value addition is on its propensity for thermal energy storage and hybridization with liquid fuels at commercial capacity. Hence, due to technology advancement and the country's high direct normal irradiation potential, concentrating solar power is the more suitable solar power technology for commercial electricity generation in Nigeria. In this paper, concentrating solar power technologies are analysed under operational, environmental and social conditions in Nigeria using data from desktop survey to determine the most suitable technology for solar thermal electric power plant. It is observed that the technical maturity of parabolic trough concentrator distinguishes it for preference to all other technologies and would exert moderate pressure on land requirement even though, it is the most expensive and water demanding technology. In terms of unit cost of electricity and water usage capabilities, parabolic dish concentrator is least expensive and uses least water but lacks proven commercial application. Solar tower is technically simpler and possesses better thermodynamic properties than the rest but its low installed capacity increases its financing risk. Hence, the trough system is the most suitable for immediate and medium term projects given its proven technology maturity and flexible financing mechanism.

Suggested Citation

  • Ogunmodimu, Olumide & Okoroigwe, Edmund C., 2018. "Concentrating solar power technologies for solar thermal grid electricity in Nigeria: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 104-119.
  • Handle: RePEc:eee:rensus:v:90:y:2018:i:c:p:104-119
    DOI: 10.1016/j.rser.2018.03.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403211830100X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2018.03.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Siva Reddy, V. & Kaushik, S.C. & Ranjan, K.R. & Tyagi, S.K., 2013. "State-of-the-art of solar thermal power plants—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 258-273.
    2. Okoroigwe, Edmund & Madhlopa, Amos, 2016. "An integrated combined cycle system driven by a solar tower: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 337-350.
    3. Stropnik, Rok & Stritih, Uroš, 2016. "Increasing the efficiency of PV panel with the use of PCM," Renewable Energy, Elsevier, vol. 97(C), pages 671-679.
    4. Sharma, Vashi & Khanna, Sourav & Nayak, Jayanta K. & Kedare, Shireesh B., 2016. "Effects of shading and blocking in compact linear fresnel reflector field," Energy, Elsevier, vol. 94(C), pages 633-653.
    5. Fthenakis, Vasilis & Mason, James E. & Zweibel, Ken, 2009. "The technical, geographical, and economic feasibility for solar energy to supply the energy needs of the US," Energy Policy, Elsevier, vol. 37(2), pages 387-399, February.
    6. Baharoon, Dhyia Aidroos & Rahman, Hasimah Abdul & Omar, Wan Zaidi Wan & Fadhl, Saeed Obaid, 2015. "Historical development of concentrating solar power technologies to generate clean electricity efficiently – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 996-1027.
    7. Bader, Roman & Pedretti, Andrea & Barbato, Maurizio & Steinfeld, Aldo, 2015. "An air-based corrugated cavity-receiver for solar parabolic trough concentrators," Applied Energy, Elsevier, vol. 138(C), pages 337-345.
    8. Pavlović, Tomislav M. & Radonjić, Ivana S. & Milosavljević, Dragana D. & Pantić, Lana S., 2012. "A review of concentrating solar power plants in the world and their potential use in Serbia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3891-3902.
    9. Liu, Ming & Steven Tay, N.H. & Bell, Stuart & Belusko, Martin & Jacob, Rhys & Will, Geoffrey & Saman, Wasim & Bruno, Frank, 2016. "Review on concentrating solar power plants and new developments in high temperature thermal energy storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1411-1432.
    10. Purohit, Ishan & Purohit, Pallav & Shekhar, Shashaank, 2013. "Evaluating the potential of concentrating solar power generation in Northwestern India," Energy Policy, Elsevier, vol. 62(C), pages 157-175.
    11. Rodriguez-Sanchez, David & Rosengarten, Gary, 2015. "Improving the concentration ratio of parabolic troughs using a second-stage flat mirror," Applied Energy, Elsevier, vol. 159(C), pages 620-632.
    12. Zhang, H.L. & Baeyens, J. & Degrève, J. & Cacères, G., 2013. "Concentrated solar power plants: Review and design methodology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 466-481.
    13. Kasaeian, A.B. & Molana, Sh. & Rahmani, K. & Wen, D., 2017. "A review on solar chimney systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 954-987.
    14. Ming, Tingzhen & Wu, Yongjia & de_Richter, Renaud K. & Liu, Wei & Sherif, S.A., 2017. "Solar updraft power plant system: A brief review and a case study on a new system with radial partition walls in its collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 472-487.
    15. Charabi, Yassine & Gastli, Adel, 2010. "GIS assessment of large CSP plant in Duqum, Oman," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 835-841, February.
    16. Srilakshmi, Gopalakrishnan & Venkatesh, V. & Thirumalai, N.C. & Suresh, N.S., 2015. "Challenges and opportunities for Solar Tower technology in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 698-709.
    17. Zhu, Zhao & Zhang, Da & Mischke, Peggy & Zhang, Xiliang, 2015. "Electricity generation costs of concentrated solar power technologies in China based on operational plants," Energy, Elsevier, vol. 89(C), pages 65-74.
    18. Wei, Xiudong & Lu, Zhenwu & Wang, Zhifeng & Yu, Weixing & Zhang, Hongxing & Yao, Zhihao, 2010. "A new method for the design of the heliostat field layout for solar tower power plant," Renewable Energy, Elsevier, vol. 35(9), pages 1970-1975.
    19. Ajayi, Oluseyi O. & Ajayi, Oluwatoyin O., 2013. "Nigeria's energy policy: Inferences, analysis and legal ethics toward RE development," Energy Policy, Elsevier, vol. 60(C), pages 61-67.
    20. Desideri, Umberto & Campana, Pietro Elia, 2014. "Analysis and comparison between a concentrating solar and a photovoltaic power plant," Applied Energy, Elsevier, vol. 113(C), pages 422-433.
    21. Ho, Clifford K. & Iverson, Brian D., 2014. "Review of high-temperature central receiver designs for concentrating solar power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 835-846.
    22. Poghosyan, V. & Hassan, Mohamed I., 2015. "Techno-economic assessment of substituting natural gas based heater with thermal energy storage system in parabolic trough concentrated solar power plant," Renewable Energy, Elsevier, vol. 75(C), pages 152-164.
    23. Peterseim, Juergen H. & White, Stuart & Tadros, Amir & Hellwig, Udo, 2013. "Concentrated solar power hybrid plants, which technologies are best suited for hybridisation?," Renewable Energy, Elsevier, vol. 57(C), pages 520-532.
    24. Malagueta, Diego & Szklo, Alexandre & Soria, Rafael & Dutra, Ricardo & Schaeffer, Roberto & Moreira Cesar Borba, Bruno Soares, 2014. "Potential and impacts of Concentrated Solar Power (CSP) integration in the Brazilian electric power system," Renewable Energy, Elsevier, vol. 68(C), pages 223-235.
    25. Nixon, J.D. & Dey, P.K. & Davies, P.A., 2010. "Which is the best solar thermal collection technology for electricity generation in north-west India? Evaluation of options using the analytical hierarchy process," Energy, Elsevier, vol. 35(12), pages 5230-5240.
    26. Chineke, Theo Chidiezie & Ezike, Fabian M., 2010. "Political will and collaboration for electric power reform through renewable energy in Africa," Energy Policy, Elsevier, vol. 38(1), pages 678-684, January.
    27. Ohunakin, Olayinka S. & Adaramola, Muyiwa S. & Oyewola, Olanrewaju. M. & Fagbenle, Richard O., 2014. "Solar energy applications and development in Nigeria: Drivers and barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 294-301.
    28. Mohammed, Y.S. & Mustafa, M.W. & Bashir, N. & Mokhtar, A.S., 2013. "Renewable energy resources for distributed power generation in Nigeria: A review of the potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 257-268.
    29. Collado, Francisco J. & Guallar, Jesús, 2013. "A review of optimized design layouts for solar power tower plants with campo code," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 142-154.
    30. Cheng, Ze-Dong & He, Ya-Ling & Du, Bao-Cun & Wang, Kun & Liang, Qi, 2015. "Geometric optimization on optical performance of parabolic trough solar collector systems using particle swarm optimization algorithm," Applied Energy, Elsevier, vol. 148(C), pages 282-293.
    31. Desideri, U. & Zepparelli, F. & Morettini, V. & Garroni, E., 2013. "Comparative analysis of concentrating solar power and photovoltaic technologies: Technical and environmental evaluations," Applied Energy, Elsevier, vol. 102(C), pages 765-784.
    32. Parida, Bhubaneswari & Iniyan, S. & Goic, Ranko, 2011. "A review of solar photovoltaic technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1625-1636, April.
    33. Bilgili, Mehmet & Ozbek, Arif & Sahin, Besir & Kahraman, Ali, 2015. "An overview of renewable electric power capacity and progress in new technologies in the world," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 323-334.
    34. Salgado Conrado, L. & Rodriguez-Pulido, A. & Calderón, G., 2017. "Thermal performance of parabolic trough solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1345-1359.
    35. Larbi, Salah & Bouhdjar, Amor & Chergui, Toufik, 2010. "Performance analysis of a solar chimney power plant in the southwestern region of Algeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 470-477, January.
    36. Al-Kayiem, Hussain H. & Aja, Ogboo Chikere, 2016. "Historic and recent progress in solar chimney power plant enhancing technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1269-1292.
    37. El Chaar, L. & lamont, L.A. & El Zein, N., 2011. "Review of photovoltaic technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2165-2175, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Al-Nimr, Moh’d A. & Al-Ammari, Wahib A., 2020. "A novel hybrid and interactive solar system consists of Stirling engine ̸vacuum evaporator ̸thermoelectric cooler for electricity generation and water distillation," Renewable Energy, Elsevier, vol. 153(C), pages 1053-1066.
    2. Wu, Yunna & Zhang, Buyuan & Wu, Chenghao & Zhang, Ting & Liu, Fangtong, 2019. "Optimal site selection for parabolic trough concentrating solar power plant using extended PROMETHEE method: A case in China," Renewable Energy, Elsevier, vol. 143(C), pages 1910-1927.
    3. Khaloie, Hooman & Anvari-Moghaddam, Amjad & Contreras, Javier & Siano, Pierluigi, 2021. "Risk-involved optimal operating strategy of a hybrid power generation company: A mixed interval-CVaR model," Energy, Elsevier, vol. 232(C).
    4. Qimei Chen & Yan Wang & Jianhan Zhang & Zhifeng Wang, 2020. "The Knowledge Mapping of Concentrating Solar Power Development Based on Literature Analysis Technology," Energies, MDPI, vol. 13(8), pages 1-15, April.
    5. Ghirardi, Elisa & Brumana, Giovanni & Franchini, Giuseppe & Perdichizzi, Antonio, 2021. "The optimal share of PV and CSP for highly renewable power systems in the GCC region," Renewable Energy, Elsevier, vol. 179(C), pages 1990-2003.
    6. Cui, Qi & He, Ling & Han, Guoyi & Chen, Hao & Cao, Juanjuan, 2020. "Review on climate and water resource implications of reducing renewable power curtailment in China: A nexus perspective," Applied Energy, Elsevier, vol. 267(C).
    7. Aqachmar, Zineb & Allouhi, Amine & Jamil, Abdelmajid & Gagouch, Belgacem & Kousksou, Tarik, 2019. "Parabolic trough solar thermal power plant Noor I in Morocco," Energy, Elsevier, vol. 178(C), pages 572-584.
    8. Chen, Heng & Xue, Kai & Wu, Yunyun & Xu, Gang & Jin, Xin & Liu, Wenyi, 2021. "Thermodynamic and economic analyses of a solar-aided biomass-fired combined heat and power system," Energy, Elsevier, vol. 214(C).
    9. Bamisile, Olusola & Huang, Qi & Xu, Xiao & Hu, Weihao & Liu, Wen & Liu, Zhou & Chen, Zhe, 2020. "An approach for sustainable energy planning towards 100 % electrification of Nigeria by 2030," Energy, Elsevier, vol. 197(C).
    10. Mustapha Mukhtar & Sandra Obiora & Nasser Yimen & Zhang Quixin & Olusola Bamisile & Pauline Jidele & Young I. Irivboje, 2021. "Effect of Inadequate Electrification on Nigeria’s Economic Development and Environmental Sustainability," Sustainability, MDPI, vol. 13(4), pages 1-24, February.
    11. Emmanuel Wendsongre Ramde & Eric Tutu Tchao & Yesuenyeagbe Atsu Kwabla Fiagbe & Jerry John Kponyo & Asakipaam Simon Atuah, 2020. "Pilot Low-Cost Concentrating Solar Power Systems Deployment in Sub-Saharan Africa: A Case Study of Implementation Challenges," Sustainability, MDPI, vol. 12(15), pages 1-14, August.
    12. Owebor, K. & Diemuodeke, E.O. & Briggs, T.A. & Imran, M., 2021. "Power Situation and renewable energy potentials in Nigeria – A case for integrated multi-generation technology," Renewable Energy, Elsevier, vol. 177(C), pages 773-796.
    13. Bushra, Nayab & Hartmann, Timo, 2019. "A review of state-of-the-art reflective two-stage solar concentrators: Technology categorization and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    14. Alimorad Sharifi & Nasim Mansouri & Babak Saffari & Shahram Moeeni, 2019. "Regional Energy Supply Planning: Chance Constraint Programming," International Journal of Energy Economics and Policy, Econjournals, vol. 9(5), pages 433-441.
    15. Buscemi, Alessandro & Lo Brano, Valerio & Chiaruzzi, Christian & Ciulla, Giuseppina & Kalogeri, Christina, 2020. "A validated energy model of a solar dish-Stirling system considering the cleanliness of mirrors," Applied Energy, Elsevier, vol. 260(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Okoroigwe, Edmund & Madhlopa, Amos, 2016. "An integrated combined cycle system driven by a solar tower: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 337-350.
    2. Islam, Md Tasbirul & Huda, Nazmul & Abdullah, A.B. & Saidur, R., 2018. "A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: Current status and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 987-1018.
    3. Khan, Jibran & Arsalan, Mudassar H., 2016. "Solar power technologies for sustainable electricity generation – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 414-425.
    4. Awan, Ahmed Bilal & Zubair, Muhammad & Chandra Mouli, Kotturu V.V., 2020. "Design, optimization and performance comparison of solar tower and photovoltaic power plants," Energy, Elsevier, vol. 199(C).
    5. Merchán, R.P. & Santos, M.J. & Medina, A. & Calvo Hernández, A., 2022. "High temperature central tower plants for concentrated solar power: 2021 overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    6. Ajbar, Wassila & Parrales, A. & Huicochea, A. & Hernández, J.A., 2022. "Different ways to improve parabolic trough solar collectors’ performance over the last four decades and their applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    7. Mostafavi Tehrani, S. Saeed & Taylor, Robert A., 2016. "Off-design simulation and performance of molten salt cavity receivers in solar tower plants under realistic operational modes and control strategies," Applied Energy, Elsevier, vol. 179(C), pages 698-715.
    8. Soria, Rafael & Lucena, André F.P. & Tomaschek, Jan & Fichter, Tobias & Haasz, Thomas & Szklo, Alexandre & Schaeffer, Roberto & Rochedo, Pedro & Fahl, Ulrich & Kern, Jürgen, 2016. "Modelling concentrated solar power (CSP) in the Brazilian energy system: A soft-linked model coupling approach," Energy, Elsevier, vol. 116(P1), pages 265-280.
    9. Hirbodi, Kamran & Enjavi-Arsanjani, Mahboubeh & Yaghoubi, Mahmood, 2020. "Techno-economic assessment and environmental impact of concentrating solar power plants in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    10. Mihoub, Sofiane & Chermiti, Ali & Beltagy, Hani, 2017. "Methodology of determining the optimum performances of future concentrating solar thermal power plants in Algeria," Energy, Elsevier, vol. 122(C), pages 801-810.
    11. Atif, Maimoon. & Al-Sulaiman, Fahad A., 2017. "Energy and exergy analyses of solar tower power plant driven supercritical carbon dioxide recompression cycles for six different locations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 153-167.
    12. Hoz, Jordi de la & Martín, Helena & Montalà, Montserrat & Matas, José & Guzman, Ramon, 2018. "Assessing the 2014 retroactive regulatory framework applied to the concentrating solar power systems in Spain," Applied Energy, Elsevier, vol. 212(C), pages 1377-1399.
    13. Delise, T. & Tizzoni, A.C. & Menale, C. & Telling, M.T.F. & Bubbico, R. & Crescenzi, T. & Corsaro, N. & Sau, S. & Licoccia, S., 2020. "Technical and economic analysis of a CSP plant presenting a low freezing ternary mixture as storage and transfer fluid," Applied Energy, Elsevier, vol. 265(C).
    14. Hussain, C.M. Iftekhar & Norton, Brian & Duffy, Aidan, 2017. "Technological assessment of different solar-biomass systems for hybrid power generation in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1115-1129.
    15. Sharma, Chandan & Sharma, Ashish K. & Mullick, Subhash C. & Kandpal, Tara C., 2015. "Assessment of solar thermal power generation potential in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 902-912.
    16. Ogunmodimu, Olumide & Okoroigwe, Edmund C., 2019. "Solar thermal electricity in Nigeria: Prospects and challenges," Energy Policy, Elsevier, vol. 128(C), pages 440-448.
    17. Pantaleo, Antonio M. & Camporeale, Sergio M. & Miliozzi, Adio & Russo, Valeria & Shah, Nilay & Markides, Christos N., 2017. "Novel hybrid CSP-biomass CHP for flexible generation: Thermo-economic analysis and profitability assessment," Applied Energy, Elsevier, vol. 204(C), pages 994-1006.
    18. Peiró, Gerard & Gasia, Jaume & Miró, Laia & Prieto, Cristina & Cabeza, Luisa F., 2016. "Experimental analysis of charging and discharging processes, with parallel and counter flow arrangements, in a molten salts high temperature pilot plant scale setup," Applied Energy, Elsevier, vol. 178(C), pages 394-403.
    19. Gutiérrez, R.E. & Haro, P. & Gómez-Barea, A., 2021. "Techno-economic and operational assessment of concentrated solar power plants with a dual supporting system," Applied Energy, Elsevier, vol. 302(C).
    20. Xu, Xinhai & Vignarooban, K. & Xu, Ben & Hsu, K. & Kannan, A.M., 2016. "Prospects and problems of concentrating solar power technologies for power generation in the desert regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1106-1131.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:90:y:2018:i:c:p:104-119. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.