IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i1p550-d1024000.html
   My bibliography  Save this article

A Review of Power Co-Generation Technologies from Hybrid Offshore Wind and Wave Energy

Author

Listed:
  • Muhammad Waqas Ayub

    (School of Engineering, Lancaster University, Lancaster LA1 4YW, UK)

  • Ameer Hamza

    (Department of Electrical and Computer Engineering, COMSATS University Islamabad, Lahore 54000, Pakistan)

  • George A. Aggidis

    (School of Engineering, Lancaster University, Lancaster LA1 4YW, UK)

  • Xiandong Ma

    (School of Engineering, Lancaster University, Lancaster LA1 4YW, UK)

Abstract

Renewable energy resources such as offshore wind and wave energy are environmentally friendly and omnipresent. A hybrid offshore wind-wave energy system produces a more sustainable form of energy that is not only eco-friendly but also economical and efficient as compared to use of individual resources. The objective of this paper is to give a detailed review of co-generation technologies for hybrid offshore wind and wave energy. The proposed area of this review paper is based on the power conversions techniques, response coupling, control schemes for co-generation and complimentary generation, and colocation and integrated conversion systems. This paper aims to offer a systematic review to cover recent research and development of novel hybrid offshore wind-wave energy (HOWWE) systems. The current hybrid wind-wave energy structures lack efficiency due to their design and AC-DC-AC power conversion that need to be improved by applying an advanced control strategy. Thus, using different power conversion techniques and control system methodologies, the HOWWE structure can be improved and will be transferrable to the other hybrid models such as hybrid solar and wind energy. The state-of-the-art HOWWE systems are reviewed. Critical analysis of each method is performed to evaluate the best possible combination for development of a HOWWE system.

Suggested Citation

  • Muhammad Waqas Ayub & Ameer Hamza & George A. Aggidis & Xiandong Ma, 2023. "A Review of Power Co-Generation Technologies from Hybrid Offshore Wind and Wave Energy," Energies, MDPI, vol. 16(1), pages 1-21, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:1:p:550-:d:1024000
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/1/550/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/1/550/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pasquale Contestabile & Enrico Di Lauro & Paolo Galli & Cesare Corselli & Diego Vicinanza, 2017. "Offshore Wind and Wave Energy Assessment around Malè and Magoodhoo Island (Maldives)," Sustainability, MDPI, vol. 9(4), pages 1-24, April.
    2. Bahaj, AbuBakr S., 2011. "Generating electricity from the oceans," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(7), pages 3399-3416, September.
    3. Fusco, Francesco & Nolan, Gary & Ringwood, John V., 2010. "Variability reduction through optimal combination of wind/wave resources – An Irish case study," Energy, Elsevier, vol. 35(1), pages 314-325.
    4. Astariz, S. & Iglesias, G., 2016. "Output power smoothing and reduced downtime period by combined wind and wave energy farms," Energy, Elsevier, vol. 97(C), pages 69-81.
    5. Florin Onea & Sorin Ciortan & Eugen Rusu, 2017. "Assessment of the potential for developing combined wind-wave projects in the European nearshore," Energy & Environment, , vol. 28(5-6), pages 580-597, September.
    6. Ferrari, Francesco & Besio, Giovanni & Cassola, Federico & Mazzino, Andrea, 2020. "Optimized wind and wave energy resource assessment and offshore exploitability in the Mediterranean Sea," Energy, Elsevier, vol. 190(C).
    7. Hu, Jianjian & Zhou, Binzhen & Vogel, Christopher & Liu, Pin & Willden, Richard & Sun, Ke & Zang, Jun & Geng, Jing & Jin, Peng & Cui, Lin & Jiang, Bo & Collu, Maurizio, 2020. "Optimal design and performance analysis of a hybrid system combing a floating wind platform and wave energy converters," Applied Energy, Elsevier, vol. 269(C).
    8. Kalogeri, Christina & Galanis, George & Spyrou, Christos & Diamantis, Dimitris & Baladima, Foteini & Koukoula, Marika & Kallos, George, 2017. "Assessing the European offshore wind and wave energy resource for combined exploitation," Renewable Energy, Elsevier, vol. 101(C), pages 244-264.
    9. Eva Loukogeorgaki & Dimitra G. Vagiona & Margarita Vasileiou, 2018. "Site Selection of Hybrid Offshore Wind and Wave Energy Systems in Greece Incorporating Environmental Impact Assessment," Energies, MDPI, vol. 11(8), pages 1-16, August.
    10. Eugen Rusu & Vengatesan Venugopal, 2019. "Special Issue “Offshore Renewable Energy: Ocean Waves, Tides and Offshore Wind”," Energies, MDPI, vol. 12(1), pages 1-4, January.
    11. Fathima, A. Hina & Palanisamy, K., 2015. "Optimization in microgrids with hybrid energy systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 431-446.
    12. Sharay Astariz & Gregorio Iglesias, 2015. "Enhancing Wave Energy Competitiveness through Co-Located Wind and Wave Energy Farms. A Review on the Shadow Effect," Energies, MDPI, vol. 8(7), pages 1-23, July.
    13. Dalton, Gordon & Bardócz, Tamás & Blanch, Mike & Campbell, David & Johnson, Kate & Lawrence, Gareth & Lilas, Theodore & Friis-Madsen, Erik & Neumann, Frank & Nikitas, Nikitakos & Ortega, Saul Torres &, 2019. "Feasibility of investment in Blue Growth multiple-use of space and multi-use platform projects; results of a novel assessment approach and case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 338-359.
    14. Wen, Yi & Kamranzad, Bahareh & Lin, Pengzhi, 2022. "Joint exploitation potential of offshore wind and wave energy along the south and southeast coasts of China," Energy, Elsevier, vol. 249(C).
    15. Jin, Siya & Greaves, Deborah, 2021. "Wave energy in the UK: Status review and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    16. Carballo, R. & Iglesias, G., 2013. "Wave farm impact based on realistic wave-WEC interaction," Energy, Elsevier, vol. 51(C), pages 216-229.
    17. Zia, Muhammad Fahad & Elbouchikhi, Elhoussin & Benbouzid, Mohamed, 2018. "Microgrids energy management systems: A critical review on methods, solutions, and prospects," Applied Energy, Elsevier, vol. 222(C), pages 1033-1055.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wen, Yi & Kamranzad, Bahareh & Lin, Pengzhi, 2022. "Joint exploitation potential of offshore wind and wave energy along the south and southeast coasts of China," Energy, Elsevier, vol. 249(C).
    2. Wan, Ling & Moan, Torgeir & Gao, Zhen & Shi, Wei, 2024. "A review on the technical development of combined wind and wave energy conversion systems," Energy, Elsevier, vol. 294(C).
    3. Gao, Qiang & Khan, Salman Saeed & Sergiienko, Nataliia & Ertugrul, Nesimi & Hemer, Mark & Negnevitsky, Michael & Ding, Boyin, 2022. "Assessment of wind and wave power characteristic and potential for hybrid exploration in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    4. Gideon, Roan A. & Bou-Zeid, Elie, 2021. "Collocating offshore wind and wave generators to reduce power output variability: A Multi-site analysis," Renewable Energy, Elsevier, vol. 163(C), pages 1548-1559.
    5. Gaughan, Eilis & Fitzgerald, Breiffni, 2020. "An assessment of the potential for Co-located offshore wind and wave farms in Ireland," Energy, Elsevier, vol. 200(C).
    6. Shabnam Hosseinzadeh & Amir Etemad-Shahidi & Rodney A. Stewart, 2023. "Site Selection of Combined Offshore Wind and Wave Energy Farms: A Systematic Review," Energies, MDPI, vol. 16(4), pages 1-33, February.
    7. P Patel, Ravi & Nagababu, Garlapati & Kachhwaha, Surendra Singh & V V Arun Kumar, Surisetty & M, Seemanth, 2022. "Combined wind and wave resource assessment and energy extraction along the Indian coast," Renewable Energy, Elsevier, vol. 195(C), pages 931-945.
    8. Astariz, S. & Iglesias, G., 2015. "The economics of wave energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 397-408.
    9. Clark, Caitlyn E. & Miller, Annalise & DuPont, Bryony, 2019. "An analytical cost model for co-located floating wind-wave energy arrays," Renewable Energy, Elsevier, vol. 132(C), pages 885-897.
    10. Rusu, Eugen & Onea, Florin, 2019. "An assessment of the wind and wave power potential in the island environment," Energy, Elsevier, vol. 175(C), pages 830-846.
    11. Rasool, Safdar & Muttaqi, Kashem M. & Sutanto, Danny & Hemer, Mark, 2022. "Quantifying the reduction in power variability of co-located offshore wind-wave farms," Renewable Energy, Elsevier, vol. 185(C), pages 1018-1033.
    12. Gao, Qiang & Yuan, Rui & Ertugrul, Nesimi & Ding, Boyin & Hayward, Jennifer A. & Li, Ye, 2023. "Analysis of energy variability and costs for offshore wind and hybrid power unit with equivalent energy storage system," Applied Energy, Elsevier, vol. 342(C).
    13. Carlos Perez-Collazo & Deborah Greaves & Gregorio Iglesias, 2018. "A Novel Hybrid Wind-Wave Energy Converter for Jacket-Frame Substructures," Energies, MDPI, vol. 11(3), pages 1-20, March.
    14. Astariz, S. & Iglesias, G., 2016. "Co-located wind and wave energy farms: Uniformly distributed arrays," Energy, Elsevier, vol. 113(C), pages 497-508.
    15. Martinez, A. & Iglesias, G., 2022. "Mapping of the levelised cost of energy for floating offshore wind in the European Atlantic," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    16. Pérez-Collazo, C. & Greaves, D. & Iglesias, G., 2015. "A review of combined wave and offshore wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 141-153.
    17. George Lavidas & Vengatesan Venugopal, 2018. "Energy Production Benefits by Wind and Wave Energies for the Autonomous System of Crete," Energies, MDPI, vol. 11(10), pages 1-14, October.
    18. Zhou, Yu & Chen, Lifen & Zhao, Jie & Liu, Xiangjian & Ye, Xiaorong & Wang, Fei & Adcock, Thomas A.A. & Ning, Dezhi, 2023. "Power and dynamic performance of a floating multi-functional platform: An experimental study," Energy, Elsevier, vol. 285(C).
    19. Li, Jiangxia & Pan, Shunqi & Chen, Yongping & Yao, Yu & Xu, Conghao, 2022. "Assessment of combined wind and wave energy in the tropical cyclone affected region:An application in China seas," Energy, Elsevier, vol. 260(C).
    20. Clemente, D. & Rosa-Santos, P. & Taveira-Pinto, F., 2021. "On the potential synergies and applications of wave energy converters: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:1:p:550-:d:1024000. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.