IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v141y2021ics1364032121000836.html
   My bibliography  Save this article

A review on available energy saving strategies for heating, ventilation and air conditioning in underground metro stations

Author

Listed:
  • Yu, Yanzhe
  • You, Shijun
  • Zhang, Huan
  • Ye, Tianzhen
  • Wang, Yaran
  • Wei, Shen

Abstract

Due to the increasing number of underground metro stations worldwide and the great energy consumption of heating, ventilation and air conditioning (HVAC) systems in underground stations, reducing the HVAC energy consumption while maintaining a hygienic and acceptable environment in underground stations is becoming an ongoing research challenge. This paper presented an overview of the strategies available for HVAC energy saving in underground stations. Firstly, the design features of the HVAC systems are summarized and issues affecting the HVAC systems’ energy efficiency are identified. Then, a thorough review of the energy-efficient HVAC strategies is presented. For each strategy, the principal application and the effect on energy saving are described, and the limitation is also analyzed. Lastly, the strategies are classified and compared from different perspectives and upcoming challenges are proposed. The authors hope that this study can promote the reasonable adoption of different energy-efficient HVAC strategies in underground stations, which could reduce the energy consumption of the HVAC systems in the long run.

Suggested Citation

  • Yu, Yanzhe & You, Shijun & Zhang, Huan & Ye, Tianzhen & Wang, Yaran & Wei, Shen, 2021. "A review on available energy saving strategies for heating, ventilation and air conditioning in underground metro stations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
  • Handle: RePEc:eee:rensus:v:141:y:2021:i:c:s1364032121000836
    DOI: 10.1016/j.rser.2021.110788
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121000836
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.110788?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ahn, Jonghoon & Cho, Soolyeon & Chung, Dae Hun, 2016. "Development of a statistical analysis model to benchmark the energy use intensity of subway stations," Applied Energy, Elsevier, vol. 179(C), pages 488-496.
    2. Ninikas, Konstantinos & Hytiris, Nicholas & Emmanuel, Rohinton & Aaen, Bjorn & Younger, Paul L., 2016. "Heat recovery from air in underground transport tunnels," Renewable Energy, Elsevier, vol. 96(PA), pages 843-849.
    3. Liu, Minzhang & Zhu, Chunguang & Zhang, Huan & Zheng, Wandong & You, Shijun & Campana, Pietro Elia & Yan, Jinyue, 2019. "The environment and energy consumption of a subway tunnel by the influence of piston wind," Applied Energy, Elsevier, vol. 246(C), pages 11-23.
    4. Leung, Philip C.M. & Lee, Eric W.M., 2013. "Estimation of electrical power consumption in subway station design by intelligent approach," Applied Energy, Elsevier, vol. 101(C), pages 634-643.
    5. Gangolells, Marta & Casals, Miquel & Forcada, Núria & Macarulla, Marcel & Giretti, Alberto, 2015. "Environmental impacts related to the commissioning and usage phase of an intelligent energy management system," Applied Energy, Elsevier, vol. 138(C), pages 216-223.
    6. Liu, Guodan & Li, Chuanrui & Hu, Songtao & Ji, Yongming & Tong, Zhen & Wang, Yimei & Tong, Li & Mao, Zhu & Lu, Shan, 2020. "Study on heat transfer model of capillary exchanger in subway source heat pump system," Renewable Energy, Elsevier, vol. 150(C), pages 1074-1088.
    7. Casals, Miquel & Gangolells, Marta & Forcada, Núria & Macarulla, Marcel & Giretti, Alberto & Vaccarini, Massimo, 2016. "SEAM4US: An intelligent energy management system for underground stations," Applied Energy, Elsevier, vol. 166(C), pages 150-164.
    8. Zhang, Huan & Zhu, Chunguang & Zheng, Wandong & You, Shijun & Ye, Tianzhen & Xue, Peng, 2016. "Experimental and numerical investigation of braking energy on thermal environment of underground subway station in China's northern severe cold regions," Energy, Elsevier, vol. 116(P1), pages 880-893.
    9. Nam, KiJeon & Heo, SungKu & Li, Qian & Loy-Benitez, Jorge & Kim, MinJeong & Park, DuckShin & Yoo, ChangKyoo, 2020. "A proactive energy-efficient optimal ventilation system using artificial intelligent techniques under outdoor air quality conditions," Applied Energy, Elsevier, vol. 266(C).
    10. Chua, K.J. & Chou, S.K. & Yang, W.M. & Yan, J., 2013. "Achieving better energy-efficient air conditioning – A review of technologies and strategies," Applied Energy, Elsevier, vol. 104(C), pages 87-104.
    11. Gangolells, Marta & Casals, Miquel & Forcada, Núria & Macarulla, Marcel & Giretti, Alberto, 2016. "Energy performance assessment of an intelligent energy management system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 662-667.
    12. Lai, Jinxing & Wang, Xiuling & Qiu, Junling & Zhang, Guozhu & Chen, Jianxun & Xie, Yongli & Luo, Yanbin, 2018. "A state-of-the-art review of sustainable energy based freeze proof technology for cold-region tunnels in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3554-3569.
    13. Thompson, J.A. & Maidment, G.G. & Missenden, J.F., 2006. "Modelling low-energy cooling strategies for underground railways," Applied Energy, Elsevier, vol. 83(10), pages 1152-1162, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ren, Xingzi & Dong, Yizhe & Guo, Jie Michael & Liu, Yaodong, 2023. "Institutional ownership and corporate greenhouse gas emissions: The evidence from China," Pacific-Basin Finance Journal, Elsevier, vol. 82(C).
    2. Pavel Atănăsoae & Radu Dumitru Pentiuc & Laurențiu Dan Milici, 2022. "Opportunity Analysis of Cogeneration and Trigeneration Solutions: An Application in the Case of a Drug Factory," Energies, MDPI, vol. 15(8), pages 1-27, April.
    3. Afaq Hyder Chohan & Jihad Awad, 2022. "Wind Catchers: An Element of Passive Ventilation in Hot, Arid and Humid Regions, a Comparative Analysis of Their Design and Function," Sustainability, MDPI, vol. 14(17), pages 1-23, September.
    4. Lin Pan & Sheng Wang & Jiying Wang & Min Xiao & Zhirong Tan, 2022. "Research on Central Air Conditioning Systems and an Intelligent Prediction Model of Building Energy Load," Energies, MDPI, vol. 15(24), pages 1-31, December.
    5. Xuemin Sui & Siyi Chen & Bing Han & Senfeng Yu, 2023. "Evaluation of the Thermal Environment of Xi’an Subway Stations in Summer and Determination of the Indoor Air Design Temperature for Air-Conditioning," Sustainability, MDPI, vol. 15(7), pages 1-21, April.
    6. Elnour, Mariam & Fadli, Fodil & Himeur, Yassine & Petri, Ioan & Rezgui, Yacine & Meskin, Nader & Ahmad, Ahmad M., 2022. "Performance and energy optimization of building automation and management systems: Towards smart sustainable carbon-neutral sports facilities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    7. Xiao, Xin & Liu, Jinjin, 2024. "A state-of-art review of dew point evaporative cooling technology and integrated applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    8. Guan, Bowen & Yang, Haobo & Zhang, Tao & Liu, Xiaohua & Wang, Xinke, 2024. "Technoeconomic analysis of rooftop PV system in elevated metro station for cost-effective operation and clean electrification," Renewable Energy, Elsevier, vol. 226(C).
    9. Yanzhe Yu & Shijun You & Shen Wei & Huan Zhang & Tianzhen Ye & Yaran Wang & Yanling Na, 2022. "Exploring the Applicability of Building Energy Performance Certification Systems in Underground Stations in China," Sustainability, MDPI, vol. 14(6), pages 1-18, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nam, KiJeon & Heo, SungKu & Li, Qian & Loy-Benitez, Jorge & Kim, MinJeong & Park, DuckShin & Yoo, ChangKyoo, 2020. "A proactive energy-efficient optimal ventilation system using artificial intelligent techniques under outdoor air quality conditions," Applied Energy, Elsevier, vol. 266(C).
    2. He, Deqiang & Teng, Xiaoliang & Chen, Yanjun & Liu, Bin & Wang, Heliang & Li, Xianwang & Ma, Rui, 2022. "Energy saving in metro ventilation system based on multi-factor analysis and air characteristics of piston vent," Applied Energy, Elsevier, vol. 307(C).
    3. He, Deqiang & Yang, Yanjie & Chen, Yanjun & Deng, Jianxin & Shan, Sheng & Liu, Jianren & Li, Xianwang, 2020. "An integrated optimization model of metro energy consumption based on regenerative energy and passenger transfer," Applied Energy, Elsevier, vol. 264(C).
    4. Casals, Miquel & Gangolells, Marta & Forcada, Núria & Macarulla, Marcel & Giretti, Alberto & Vaccarini, Massimo, 2016. "SEAM4US: An intelligent energy management system for underground stations," Applied Energy, Elsevier, vol. 166(C), pages 150-164.
    5. Yanzhe Yu & Shijun You & Shen Wei & Huan Zhang & Tianzhen Ye & Yaran Wang & Yanling Na, 2022. "Exploring the Applicability of Building Energy Performance Certification Systems in Underground Stations in China," Sustainability, MDPI, vol. 14(6), pages 1-18, March.
    6. Marta Gangolells & Miquel Casals & Núria Forcada & Marcel Macarulla, 2020. "Life Cycle Analysis of a Game-Based Solution for Domestic Energy Saving," Sustainability, MDPI, vol. 12(17), pages 1-18, August.
    7. Ji, Yongming & Wang, Wenqiang & Fan, Yujing & Hu, Songtao, 2023. "Coupling effect between tunnel lining heat exchanger and subway thermal environment," Renewable Energy, Elsevier, vol. 217(C).
    8. Ren, Zhili & Gao, Xiangkui & Wang, Tao & Xiao, Yimin & Zeng, Zhen & Chen, Long & Pang, Yantao & Ma, Yunlong & Xiong, Qian & Chen, Senlin & Ren, Yucheng, 2024. "Numerical study on thermal storage and exothermic characteristics of subway station fresh air shaft surrounding rock," Energy, Elsevier, vol. 293(C).
    9. Wang, Lan & Lee, Eric W.M. & Yuen, Richard K.K., 2018. "Novel dynamic forecasting model for building cooling loads combining an artificial neural network and an ensemble approach," Applied Energy, Elsevier, vol. 228(C), pages 1740-1753.
    10. Liu, Siwei & Lu, Chao & He, Guannan, 2024. "Distributed electric bicycle batteries for subway station energy management as a virtual power plant," Applied Energy, Elsevier, vol. 370(C).
    11. He, Guoxi & Li, Yansong & Huang, Yuanjie & Sun, Liying & Liao, Kexi, 2019. "A framework of smart pipeline system and its application on multiproduct pipeline leakage handling," Energy, Elsevier, vol. 188(C).
    12. Xiaonan Yan & Liangliang Tao & Junqin Peng & Yanhua Zeng & Yong Fang & Yun Bai, 2020. "Behavior of Piston Wind Induced by Braking Train in a Tunnel," Energies, MDPI, vol. 13(23), pages 1-19, December.
    13. Li, Bingxu & Wu, Bingjie & Peng, Yelun & Cai, Wenjian, 2022. "Tube-based robust model predictive control of multi-zone demand-controlled ventilation systems for energy saving and indoor air quality," Applied Energy, Elsevier, vol. 307(C).
    14. Jing, Gang & Cai, Wenjian & Zhang, Xin & Cui, Can & Yin, Xiaohong & Xian, Huacai, 2019. "An energy-saving oriented air balancing strategy for multi-zone demand-controlled ventilation system," Energy, Elsevier, vol. 172(C), pages 1053-1065.
    15. Niamsuwan, Sathit & Kittisupakorn, Paisan & Suwatthikul, Ajaree, 2015. "Enhancement of energy efficiency in a paint curing oven via CFD approach: Case study in an air-conditioning plant," Applied Energy, Elsevier, vol. 156(C), pages 465-477.
    16. Svetlana Ratner & Yuri Chepurko & Larisa Drobyshecskaya & Anna Petrovskaya, 2018. "Management of Energy Enterprises: Energy-efficiency Approach in Solar Collectors Industry: The Case of Russia," International Journal of Energy Economics and Policy, Econjournals, vol. 8(4), pages 237-243.
    17. Yang, Xiaohu & Yu, Jiabang & Guo, Zengxu & Jin, Liwen & He, Ya-Ling, 2019. "Role of porous metal foam on the heat transfer enhancement for a thermal energy storage tube," Applied Energy, Elsevier, vol. 239(C), pages 142-156.
    18. Wang, Wenqing & Kolditz, Olaf & Nagel, Thomas, 2017. "Parallel finite element modelling of multi-physical processes in thermochemical energy storage devices," Applied Energy, Elsevier, vol. 185(P2), pages 1954-1964.
    19. Zhang, Yue-Jun & Liu, Zhao & Zhou, Si-Ming & Qin, Chang-Xiong & Zhang, Huan, 2018. "The impact of China's Central Rise Policy on carbon emissions at the stage of operation in road sector," Economic Modelling, Elsevier, vol. 71(C), pages 159-173.
    20. Yang, Shiyu & Wan, Man Pun & Ng, Bing Feng & Dubey, Swapnil & Henze, Gregor P. & Chen, Wanyu & Baskaran, Krishnamoorthy, 2020. "Experimental study of model predictive control for an air-conditioning system with dedicated outdoor air system," Applied Energy, Elsevier, vol. 257(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:141:y:2021:i:c:s1364032121000836. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.