IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v217y2023ics0960148123010807.html
   My bibliography  Save this article

Coupling effect between tunnel lining heat exchanger and subway thermal environment

Author

Listed:
  • Ji, Yongming
  • Wang, Wenqiang
  • Fan, Yujing
  • Hu, Songtao

Abstract

If the waste heat generated during the long-term operation of a subway cannot be effectively eliminated, it will lead to the deterioration of the tunnel thermal environment and thermal pollution of the underground space. A subway source heat pump system (SSHPS) with a tunnel lining heat exchanger is an effective technique for addressing this problem. The present studies mainly focus on the design and performance optimisation of front-end heat exchangers and lack the analysis of the influence of heat exchanger operation on the thermal environment within the tunnels. Based on a demonstration project of an SSHPS in a cold region of China, this study established a coupled heat transfer model involving tunnel air, a lining heat exchanger, and surrounding rock and built a system simulation module in the TRNSYS platform. Based on the validated system simulation module, the coupling effect between the lining heat exchanger operation and the tunnel thermal environment was analysed under different tunnel environment conditions. The results show that when the heat produced in the tunnel increases at the rate of 100 W/m, the heat transfer between the heat exchanger and the tunnel air decreases by 4.35 W/m2 in the cooling season, and increases by 4.36 W/m2 in the heating season. In the cooling season, when the surrounding rock temperature rises by 2 °C, the heat released by the heat exchanger to the surrounding rock decreases by 3.6 W/m2, while that to the tunnel air increases by 0.68 W/m2. The results indicate that the heat generated by subway operations directly affects the heat transfer efficiency between the tunnel lining heat exchanger and tunnel air. The increase in the temperature of the surrounding rock causes the heat exchanger to release more heat to the tunnel air and vice versa. It is suggested that when the subway tunnel heat generation or heat exchanger operation has adverse effects on the tunnel environment, the operating condition of the tunnel heat exchanger should be adjusted accordingly to prevent the tunnel air temperature from exceeding the design limits. This study can provide a reference for the engineering design of subway tunnel lining heat exchangers.

Suggested Citation

  • Ji, Yongming & Wang, Wenqiang & Fan, Yujing & Hu, Songtao, 2023. "Coupling effect between tunnel lining heat exchanger and subway thermal environment," Renewable Energy, Elsevier, vol. 217(C).
  • Handle: RePEc:eee:renene:v:217:y:2023:i:c:s0960148123010807
    DOI: 10.1016/j.renene.2023.119165
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123010807
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119165?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee, Chulho & Park, Sangwoo & Won, Jongmuk & Jeoung, Jaehyeung & Sohn, Byonghu & Choi, Hangseok, 2012. "Evaluation of thermal performance of energy textile installed in Tunnel," Renewable Energy, Elsevier, vol. 42(C), pages 11-22.
    2. Ogunleye, Oluwaseun & Singh, Rao Martand & Cecinato, Francesco & Chan Choi, Jung, 2020. "Effect of intermittent operation on the thermal efficiency of energy tunnels under varying tunnel air temperature," Renewable Energy, Elsevier, vol. 146(C), pages 2646-2658.
    3. Tong, Li & Liu, Nan & Hu, Songtao & Ji, Yongming & Lu, Shan & Liu, Guodan & Tong, Zhen, 2021. "Study on key design parameters of subway source heat pump system with capillary exchanger," Renewable Energy, Elsevier, vol. 164(C), pages 183-193.
    4. Liu, Guodan & Li, Chuanrui & Hu, Songtao & Ji, Yongming & Tong, Zhen & Wang, Yimei & Tong, Li & Mao, Zhu & Lu, Shan, 2020. "Study on heat transfer model of capillary exchanger in subway source heat pump system," Renewable Energy, Elsevier, vol. 150(C), pages 1074-1088.
    5. Zhang, Huan & Zhu, Chunguang & Zheng, Wandong & You, Shijun & Ye, Tianzhen & Xue, Peng, 2016. "Experimental and numerical investigation of braking energy on thermal environment of underground subway station in China's northern severe cold regions," Energy, Elsevier, vol. 116(P1), pages 880-893.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ji, Yongming & Shen, Shouheng & Wang, Xinru & Zhang, Hui & Qi, Haoyu & Hu, Songtao, 2024. "Impact of groundwater seepage on thermal performance of capillary heat exchangers in subway tunnel lining," Renewable Energy, Elsevier, vol. 227(C).
    2. Zhang, Guozhu & Cao, Ziming & Xiao, Suguang & Guo, Yimu & Li, Chenglin, 2022. "A promising technology of cold energy storage using phase change materials to cool tunnels with geothermal hazards," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    3. Ji, Yongming & Wu, Wenze & Qi, Haoyu & Wang, Wenqiang & Hu, Songtao, 2022. "Heat transfer performance analysis of front-end capillary heat exchanger of a subway source heat pump system," Energy, Elsevier, vol. 246(C).
    4. Su, Xing & Chen, Chaoyang & Huang, Yixiang & Tian, Shaochen & Xia, Jihao & Liu, Jun & Yu, Yuanbo, 2024. "System reliability study of geothermal energy walls in subway stations based on rapid thermal performance prediction model," Energy, Elsevier, vol. 304(C).
    5. Li, Chenglin & Zhang, Guozhu & Xiao, Suguang & Shi, Yehui & Xu, Chenghua & Sun, Yinjuan, 2023. "Numerical investigation on thermal performance enhancement mechanism of tunnel lining GHEs using two-phase closed thermosyphons for building cooling," Renewable Energy, Elsevier, vol. 212(C), pages 875-886.
    6. Li, Chenglin & Zhang, Guozhu & Xiao, Suguang & Xie, Yongli & Liu, Xiaohua & Cao, Shiding, 2022. "Long-term operation of tunnel-lining ground heat exchangers in tropical zones: Energy, environmental, and economic performance evaluation," Renewable Energy, Elsevier, vol. 196(C), pages 1429-1442.
    7. Luo, Mingrui & Yuan, Zuobing & Fan, Lintao & Tao, Liangliang & Zeng, Yanhua & Yuan, Yanping & Zhou, Jiamei, 2024. "Effects of longitudinal ventilation and GHEs on geothermal energy extraction and HRC in high geothermal tunnels," Renewable Energy, Elsevier, vol. 232(C).
    8. Wang, Jing & Mao, Jinfeng & Han, Xu & Li, Yong, 2021. "Study on analytical solution model of heat transfer of ground heat exchanger in the protection engineering structure," Renewable Energy, Elsevier, vol. 179(C), pages 998-1008.
    9. Ji, Yongming & Wu, Wenze & Hu, Songtao, 2023. "Long-term performance of a front-end capillary heat exchanger for a metro source heat pump system," Applied Energy, Elsevier, vol. 335(C).
    10. Liu, Jiaxin & Han, Chanjuan, 2023. "Design and optimization of heat extraction section in energy tunnel using simulated annealing algorithm," Renewable Energy, Elsevier, vol. 213(C), pages 218-232.
    11. Ji, Yongming & Yin, Zhenfeng & Jiao, Jiachen & Hu, Songtao, 2023. "Long-term performance of a subway source heat pump system with two types of front-end heat exchangers," Renewable Energy, Elsevier, vol. 210(C), pages 640-655.
    12. Ma, Chunjing & Donna, Alice Di & Dias, Daniel & Zhang, Jiamin, 2021. "Numerical investigations of the tunnel environment effect on the performance of energy tunnels," Renewable Energy, Elsevier, vol. 172(C), pages 1279-1292.
    13. Yu, Yanzhe & You, Shijun & Zhang, Huan & Ye, Tianzhen & Wang, Yaran & Wei, Shen, 2021. "A review on available energy saving strategies for heating, ventilation and air conditioning in underground metro stations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    14. Shuang Meng & Dan Zhou & Zhe Wang, 2019. "Moving model analysis on the transient pressure and slipstream caused by a metro train passing through a tunnel," PLOS ONE, Public Library of Science, vol. 14(9), pages 1-23, September.
    15. He, Deqiang & Teng, Xiaoliang & Chen, Yanjun & Liu, Bin & Wang, Heliang & Li, Xianwang & Ma, Rui, 2022. "Energy saving in metro ventilation system based on multi-factor analysis and air characteristics of piston vent," Applied Energy, Elsevier, vol. 307(C).
    16. Ren, Zhili & Gao, Xiangkui & Wang, Tao & Xiao, Yimin & Zeng, Zhen & Chen, Long & Pang, Yantao & Ma, Yunlong & Xiong, Qian & Chen, Senlin & Ren, Yucheng, 2024. "Numerical study on thermal storage and exothermic characteristics of subway station fresh air shaft surrounding rock," Energy, Elsevier, vol. 293(C).
    17. Anis Akrouch, Ghassan & Sánchez, Marcelo & Briaud, Jean-Louis, 2020. "Thermal performance and economic study of an energy piles system under cooling dominated conditions," Renewable Energy, Elsevier, vol. 147(P2), pages 2736-2747.
    18. Geisler, T. & Wolf, M. & Götzl, G. & Burger, U. & Cordes, T. & Voit, K. & Straka, W. & Nyeki, E. & Haslinger, E. & Auer, R. & Lauermann, M. & Pol, O. & Obradovic, M. & Pröll, T. & Marcher, T., 2023. "Optimizing the geothermal potential of tunnel water by separating colder sectional discharges - Case study Brenner Base Tunnel," Renewable Energy, Elsevier, vol. 203(C), pages 529-541.
    19. Liu, Minzhang & Zhu, Chunguang & Zhang, Huan & Zheng, Wandong & You, Shijun & Campana, Pietro Elia & Yan, Jinyue, 2019. "The environment and energy consumption of a subway tunnel by the influence of piston wind," Applied Energy, Elsevier, vol. 246(C), pages 11-23.
    20. You, Tian & Wu, Wei & Yang, Hongxing & Liu, Jiankun & Li, Xianting, 2021. "Hybrid photovoltaic/thermal and ground source heat pump: Review and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:217:y:2023:i:c:s0960148123010807. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.