IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v82y2018ip3p3554-3569.html
   My bibliography  Save this article

A state-of-the-art review of sustainable energy based freeze proof technology for cold-region tunnels in China

Author

Listed:
  • Lai, Jinxing
  • Wang, Xiuling
  • Qiu, Junling
  • Zhang, Guozhu
  • Chen, Jianxun
  • Xie, Yongli
  • Luo, Yanbin

Abstract

To cope with tunnel frost damage, studies on prevention methods are routinely conducted to improve environmental protection and energy saving. Based on field investigations, the main available thermal insulation methods and their application are discussed and analysed in this paper. The results show that passive measures, such as a thermal insulation layer or door, cannot completely avoid frost damage. Construction investment of the electric heat tracing (EHT) system is lower at the early stage, but a large investment in operation and pollution problems are needed in the later period. As renewable, clean and environmentally friendly primary energy, geothermal energy can realize energy-saving and emission-reduction. Furthermore, our research team proposed the optimization design method for tunnel heat insulation and anti-freezing by using geothermal energy and presented the challenges for future applications of the ground-source heat pump (GSHP) system in tunnels. The results regarding energy conservation from this review can provide useful technical support in design, operation and management of tunnels in cold regions.

Suggested Citation

  • Lai, Jinxing & Wang, Xiuling & Qiu, Junling & Zhang, Guozhu & Chen, Jianxun & Xie, Yongli & Luo, Yanbin, 2018. "A state-of-the-art review of sustainable energy based freeze proof technology for cold-region tunnels in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3554-3569.
  • Handle: RePEc:eee:rensus:v:82:y:2018:i:p3:p:3554-3569
    DOI: 10.1016/j.rser.2017.10.104
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117314739
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.10.104?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ozel, Meral, 2011. "Effect of wall orientation on the optimum insulation thickness by using a dynamic method," Applied Energy, Elsevier, vol. 88(7), pages 2429-2435, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marco Huymajer & Matthias Woegerbauer & Leopold Winkler & Alexandra Mazak-Huemer & Hubert Biedermann, 2022. "An Interdisciplinary Systematic Review on Sustainability in Tunneling—Bibliometrics, Challenges, and Solutions," Sustainability, MDPI, vol. 14(4), pages 1-33, February.
    2. Jinli Xie & Yinghong Qin, 2021. "Heat Transfer and Bearing Characteristics of Energy Piles: Review," Energies, MDPI, vol. 14(20), pages 1-15, October.
    3. Peilong Yuan & Chao Ma & Yuhang Liu & Junling Qiu & Tong Liu & Yanping Luo & Yunteng Chen, 2023. "Recent Progress in the Cracking Mechanism and Control Measures of Tunnel Lining Cracking under the Freeze–Thaw Cycle," Sustainability, MDPI, vol. 15(16), pages 1-22, August.
    4. Zhijun Zhou & Jiangtao Lei & Shanshan Zhu & Susu Qiao & Hao Zhang, 2019. "The Formation Mechanism and Influence Factors of Highway Waterfall Ice: A Preliminary Study," Sustainability, MDPI, vol. 11(15), pages 1-21, July.
    5. Yu, Yanzhe & You, Shijun & Zhang, Huan & Ye, Tianzhen & Wang, Yaran & Wei, Shen, 2021. "A review on available energy saving strategies for heating, ventilation and air conditioning in underground metro stations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    6. Junling Qiu & Xiuling Wang & Siyue He & Houquan Liu & Jinxing Lai & Lixin Wang, 2017. "The catastrophic landside in Maoxian County, Sichuan, SW China, on June 24, 2017," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(3), pages 1485-1493, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Axaopoulos, Ioannis & Axaopoulos, Petros & Gelegenis, John, 2014. "Optimum insulation thickness for external walls on different orientations considering the speed and direction of the wind," Applied Energy, Elsevier, vol. 117(C), pages 167-175.
    2. Saafi, Khawla & Daouas, Naouel, 2018. "A life-cycle cost analysis for an optimum combination of cool coating and thermal insulation of residential building roofs in Tunisia," Energy, Elsevier, vol. 152(C), pages 925-938.
    3. Pan, Dongmei & Chan, Mingyin & Deng, Shiming & Lin, Zhongping, 2012. "The effects of external wall insulation thickness on annual cooling and heating energy uses under different climates," Applied Energy, Elsevier, vol. 97(C), pages 313-318.
    4. Daouas, Naouel, 2016. "Impact of external longwave radiation on optimum insulation thickness in Tunisian building roofs based on a dynamic analytical model," Applied Energy, Elsevier, vol. 177(C), pages 136-148.
    5. Joana Fernandes & Maria Catarina Santos & Rui Castro, 2021. "Introductory Review of Energy Efficiency in Buildings Retrofits," Energies, MDPI, vol. 14(23), pages 1-18, December.
    6. Berger, Julien & Mendes, Nathan, 2017. "An innovative method for the design of high energy performance building envelopes," Applied Energy, Elsevier, vol. 190(C), pages 266-277.
    7. Ai, Wei & Wang, Liang & Lin, Xipeng & Zhang, Shuang & Bai, Yakai & Chen, Haisheng, 2023. "Mathematical and thermo-economic analysis of thermal insulation for thermal energy storage applications," Renewable Energy, Elsevier, vol. 213(C), pages 233-245.
    8. Jihui Yuan & Craig Farnham & Kazuo Emura, 2017. "Optimum Insulation Thickness for Building Exterior Walls in 32 Regions of China to Save Energy and Reduce CO 2 Emissions," Sustainability, MDPI, vol. 9(10), pages 1-13, September.
    9. Mazzeo, D. & Oliveti, G. & Arcuri, N., 2016. "Influence of internal and external boundary conditions on the decrement factor and time lag heat flux of building walls in steady periodic regime," Applied Energy, Elsevier, vol. 164(C), pages 509-531.
    10. Elaouzy, Y. & El Fadar, A., 2022. "Energy, economic and environmental benefits of integrating passive design strategies into buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    11. Kontoleon, Karolos J. & Saboor, Shaik & Mazzeo, Domenico & Ahmad, Jawad & Cuce, Erdem, 2023. "Thermal sensitivity and potential cooling-related energy saving of masonry walls through the lens of solar heat-rejecting paints at varying orientations," Applied Energy, Elsevier, vol. 329(C).
    12. Rodrigues, Eugénio & Gaspar, Adélio Rodrigues & Gomes, Álvaro, 2014. "Improving thermal performance of automatically generated floor plans using a geometric variable sequential optimization procedure," Applied Energy, Elsevier, vol. 132(C), pages 200-215.
    13. Axaopoulos, Ioannis & Axaopoulos, Petros & Panayiotou, Gregoris & Kalogirou, Soteris & Gelegenis, John, 2015. "Optimal economic thickness of various insulation materials for different orientations of external walls considering the wind characteristics," Energy, Elsevier, vol. 90(P1), pages 939-952.
    14. Sevindir, M. Kemal & Demir, Hakan & Ağra, Özden & Atayılmaz, Ş. Özgür & Teke, İsmail, 2017. "Modelling the optimum distribution of insulation material," Renewable Energy, Elsevier, vol. 113(C), pages 74-84.
    15. Asma' M. Bataineh & Hikmat H. Ali, 2021. "Improving Energy Efficiency of Multi-Family Apartment Buildings Case of Jordan," International Journal of Energy Economics and Policy, Econjournals, vol. 11(5), pages 244-254.
    16. Jie, Pengfei & Zhang, Fenghe & Fang, Zhou & Wang, Hongbo & Zhao, Yunfeng, 2018. "Optimizing the insulation thickness of walls and roofs of existing buildings based on primary energy consumption, global cost and pollutant emissions," Energy, Elsevier, vol. 159(C), pages 1132-1147.
    17. Amir Ali & Anas Issa & Ahmed Elshaer, 2024. "A Comprehensive Review and Recent Trends in Thermal Insulation Materials for Energy Conservation in Buildings," Sustainability, MDPI, vol. 16(20), pages 1-42, October.
    18. Antonio Dominguez-Delgado & Helena Domínguez-Torres & Carlos-Antonio Domínguez-Torres, 2020. "Energy and Economic Life Cycle Assessment of Cool Roofs Applied to the Refurbishment of Social Housing in Southern Spain," Sustainability, MDPI, vol. 12(14), pages 1-35, July.
    19. Kontoleon, K.J. & Giarma, C., 2016. "Dynamic thermal response of building material layers in aspect of their moisture content," Applied Energy, Elsevier, vol. 170(C), pages 76-91.
    20. Jorge Lucero-Álvarez & Norma A. Rodríguez-Muñoz & Ignacio R. Martín-Domínguez, 2016. "The Effects of Roof and Wall Insulation on the Energy Costs of Low Income Housing in Mexico," Sustainability, MDPI, vol. 8(7), pages 1-19, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:82:y:2018:i:p3:p:3554-3569. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.