IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i6p3612-d774756.html
   My bibliography  Save this article

Exploring the Applicability of Building Energy Performance Certification Systems in Underground Stations in China

Author

Listed:
  • Yanzhe Yu

    (School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China)

  • Shijun You

    (School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
    National Engineering Laboratory for Digital Construction and Evaluation Technology of Urban Rail Transit, Tianjin 300072, China)

  • Shen Wei

    (The Bartlett School of Sustainable Construction, University College London (UCL), 1-19 Torrington Place, London WC1E 7HB, UK)

  • Huan Zhang

    (School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
    National Engineering Laboratory for Digital Construction and Evaluation Technology of Urban Rail Transit, Tianjin 300072, China)

  • Tianzhen Ye

    (School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
    National Engineering Laboratory for Digital Construction and Evaluation Technology of Urban Rail Transit, Tianjin 300072, China)

  • Yaran Wang

    (School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China)

  • Yanling Na

    (National Engineering Laboratory for Digital Construction and Evaluation Technology of Urban Rail Transit, Tianjin 300072, China
    China Railway Design Corporation, Tianjin 300308, China)

Abstract

To improve the energy efficiency of underground metro stations, and in view of the absence of a comprehensive energy performance evaluation system for underground stations, this study introduced building Energy Performance Certification (EPC) tools into underground stations and conducted a comparative analysis of their applicability. The findings indicated that due to the unique characteristics of underground stations, China’s current EPC system was inapplicable to them. Specifically, (1) for basic items, although evaluation methods were available, due to the limited energy use data for the statistical method, the self-reference method was preferred, but its calculation encountered issues with missing reference values; (2) for prescribed items, the emphasis should be placed on the energy efficiency requirements of energy use systems rather than those of the thermal performance of envelopes; (3) for alternative items, the energy recovery measures related to the heat dissipation of trains and the piston wind should be addressed. Furthermore, a case study was conducted for verification of the proposed energy evaluation method, and the EPC system was updated based on the results of the comparison. The authors hope that this study will help improve China’s energy evaluation methods for underground stations and serve as a reference for expanding the EPC system to include public transportation buildings.

Suggested Citation

  • Yanzhe Yu & Shijun You & Shen Wei & Huan Zhang & Tianzhen Ye & Yaran Wang & Yanling Na, 2022. "Exploring the Applicability of Building Energy Performance Certification Systems in Underground Stations in China," Sustainability, MDPI, vol. 14(6), pages 1-18, March.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:6:p:3612-:d:774756
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/6/3612/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/6/3612/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zheng, Peng & Qi, Lingfei & Sun, Mengdie & Luo, Dabing & Zhang, Zutao, 2021. "A novel wind energy harvesting system with hybrid mechanism for self-powered applications in subway tunnels," Energy, Elsevier, vol. 227(C).
    2. Ahn, Jonghoon & Cho, Soolyeon & Chung, Dae Hun, 2016. "Development of a statistical analysis model to benchmark the energy use intensity of subway stations," Applied Energy, Elsevier, vol. 179(C), pages 488-496.
    3. He, Deqiang & Liu, Chenyu & Jin, Zhenzhen & Ma, Rui & Chen, Yanjun & Shan, Sheng, 2022. "Fault diagnosis of flywheel bearing based on parameter optimization variational mode decomposition energy entropy and deep learning," Energy, Elsevier, vol. 239(PB).
    4. Yu, Yanzhe & You, Shijun & Zhang, Huan & Ye, Tianzhen & Wang, Yaran & Wei, Shen, 2021. "A review on available energy saving strategies for heating, ventilation and air conditioning in underground metro stations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    5. Dall’O’, Giuliano & Sarto, Luca & Sanna, Nicola & Tonetti, Valeria & Ventura, Martina, 2015. "On the use of an energy certification database to create indicators for energy planning purposes: Application in northern Italy," Energy Policy, Elsevier, vol. 85(C), pages 207-217.
    6. Yu, Yanzhe & Cheng, Jie & You, Shijun & Ye, Tianzhen & Zhang, Huan & Fan, Man & Wei, Shen & Liu, Shan, 2019. "Effect of implementing building energy efficiency labeling in China: A case study in Shanghai," Energy Policy, Elsevier, vol. 133(C).
    7. Hong, Tianzhen & Li, Cheng & Yan, Da, 2015. "Updates to the China Design Standard for Energy Efficiency in public buildings," Energy Policy, Elsevier, vol. 87(C), pages 187-198.
    8. Liang Wong, Ing & Krüger, Eduardo, 2017. "Comparing energy efficiency labelling systems in the EU and Brazil: Implications, challenges, barriers and opportunities," Energy Policy, Elsevier, vol. 109(C), pages 310-323.
    9. A.M. Fogheri, 2015. "Energy Efficiency in Public Buildings," Rivista economica del Mezzogiorno, Società editrice il Mulino, issue 3-4, pages 763-784.
    10. Wang, Hailin & Ou, Xunmin & Zhang, Xiliang, 2017. "Mode, technology, energy consumption, and resulting CO2 emissions in China's transport sector up to 2050," Energy Policy, Elsevier, vol. 109(C), pages 719-733.
    11. He, Deqiang & Yang, Yanjie & Chen, Yanjun & Deng, Jianxin & Shan, Sheng & Liu, Jianren & Li, Xianwang, 2020. "An integrated optimization model of metro energy consumption based on regenerative energy and passenger transfer," Applied Energy, Elsevier, vol. 264(C).
    12. Thompson, J.A. & Maidment, G.G. & Missenden, J.F., 2006. "Modelling low-energy cooling strategies for underground railways," Applied Energy, Elsevier, vol. 83(10), pages 1152-1162, October.
    13. Lopes, Alice do Carmo Precci & Oliveira Filho, Delly & Altoe, Leandra & Carlo, Joyce Correna & Lima, Bruna Bastos, 2016. "Energy efficiency labeling program for buildings in Brazil compared to the United States' and Portugal's," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 207-219.
    14. Pan, Deng & Zhao, Liting & Luo, Qing & Zhang, Chuansheng & Chen, Zejun, 2018. "Study on the performance improvement of urban rail transit system," Energy, Elsevier, vol. 161(C), pages 1154-1171.
    15. Zhang, Huan & Zhu, Chunguang & Zheng, Wandong & You, Shijun & Ye, Tianzhen & Xue, Peng, 2016. "Experimental and numerical investigation of braking energy on thermal environment of underground subway station in China's northern severe cold regions," Energy, Elsevier, vol. 116(P1), pages 880-893.
    16. He, Deqiang & Teng, Xiaoliang & Chen, Yanjun & Liu, Bin & Wang, Heliang & Li, Xianwang & Ma, Rui, 2022. "Energy saving in metro ventilation system based on multi-factor analysis and air characteristics of piston vent," Applied Energy, Elsevier, vol. 307(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Edmundas Monstvilas & Simon Paul Borg & Rosita Norvaišienė & Karolis Banionis & Juozas Ramanauskas, 2023. "Impact of the EPBD on Changes in the Energy Performance of Multi-Apartment Buildings in Lithuania," Sustainability, MDPI, vol. 15(3), pages 1-15, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Yanzhe & You, Shijun & Zhang, Huan & Ye, Tianzhen & Wang, Yaran & Wei, Shen, 2021. "A review on available energy saving strategies for heating, ventilation and air conditioning in underground metro stations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    2. Yu, Jinghua & Ye, Hong & Xu, Xinhua & Huang, Junchao & Liu, Yunxi & Wang, Jinbo, 2018. "Experimental study on the thermal performance of a hollow block ventilation wall," Renewable Energy, Elsevier, vol. 122(C), pages 619-631.
    3. Wang, Y. & Mauree, D. & Sun, Q. & Lin, H. & Scartezzini, J.L. & Wennersten, R., 2020. "A review of approaches to low-carbon transition of high-rise residential buildings in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    4. Qi-Gan Shao & James J. H. Liou & Sung-Shun Weng & Yen-Ching Chuang, 2018. "Improving the Green Building Evaluation System in China Based on the DANP Method," Sustainability, MDPI, vol. 10(4), pages 1-20, April.
    5. Liu, Jia & Chen, Xi & Yang, Hongxing & Li, Yutong, 2020. "Energy storage and management system design optimization for a photovoltaic integrated low-energy building," Energy, Elsevier, vol. 190(C).
    6. Yu, Jinghua & Leng, Kangxin & Ye, Hong & Xu, Xinhua & Luo, Yongqiang & Wang, Jinbo & Yang, Xie & Yang, Qingchen & Gang, Wenjie, 2020. "Study on thermal insulation characteristics and optimized design of pipe-embedded ventilation roof with outer-layer shape-stabilized PCM in different climate zones," Renewable Energy, Elsevier, vol. 147(P1), pages 1609-1622.
    7. Yijun Fu & Shicong Zhang & Xi Chen & Wei Xu, 2021. "Sino-American Building Energy Standards Comparison and Recommendations towards Zero Energy Building," Sustainability, MDPI, vol. 13(18), pages 1-20, September.
    8. Ahn, Jonghoon & Cho, Soolyeon & Chung, Dae Hun, 2016. "Development of a statistical analysis model to benchmark the energy use intensity of subway stations," Applied Energy, Elsevier, vol. 179(C), pages 488-496.
    9. Muhammad Shahid Mastoi & Hafiz Mudassir Munir & Shenxian Zhuang & Mannan Hassan & Muhammad Usman & Ahmad Alahmadi & Basem Alamri, 2022. "A Comprehensive Analysis of the Power Demand–Supply Situation, Electricity Usage Patterns, and the Recent Development of Renewable Energy in China," Sustainability, MDPI, vol. 14(6), pages 1-34, March.
    10. Hu, Wenyu & E, Jiaqiang & Tan, Yan & Zhang, Feng & Liao, Gaoliang, 2022. "Modified wind energy collection devices for harvesting convective wind energy from cars and trucks moving in the highway," Energy, Elsevier, vol. 247(C).
    11. Qiu, Changyu & Yang, Hongxing, 2020. "Daylighting and overall energy performance of a novel semi-transparent photovoltaic vacuum glazing in different climate zones," Applied Energy, Elsevier, vol. 276(C).
    12. Droutsa, Kalliopi G. & Kontoyiannidis, Simon & Dascalaki, Elena G. & Balaras, Constantinos A., 2016. "Mapping the energy performance of hellenic residential buildings from EPC (energy performance certificate) data," Energy, Elsevier, vol. 98(C), pages 284-295.
    13. Zhang, Lang & He, Deqiang & He, Yan & Liu, Bin & Chen, Yanjun & Shan, Sheng, 2022. "Real-time energy saving optimization method for urban rail transit train timetable under delay condition," Energy, Elsevier, vol. 258(C).
    14. Luo, Yongqiang & Zhang, Ling & Liu, Zhongbing & Wang, Yingzi & Meng, Fangfang & Wu, Jing, 2016. "Thermal performance evaluation of an active building integrated photovoltaic thermoelectric wall system," Applied Energy, Elsevier, vol. 177(C), pages 25-39.
    15. Zhang, Weilong & Lu, Lin, 2019. "Overall energy assessment of semi-transparent photovoltaic insulated glass units for building integration under different climate conditions," Renewable Energy, Elsevier, vol. 134(C), pages 818-827.
    16. He, Deqiang & Teng, Xiaoliang & Chen, Yanjun & Liu, Bin & Wang, Heliang & Li, Xianwang & Ma, Rui, 2022. "Energy saving in metro ventilation system based on multi-factor analysis and air characteristics of piston vent," Applied Energy, Elsevier, vol. 307(C).
    17. Hou, Jing & Liu, Yisheng & Wu, Yong & Zhou, Nan & Feng, Wei, 2016. "Comparative study of commercial building energy-efficiency retrofit policies in four pilot cities in China," Energy Policy, Elsevier, vol. 88(C), pages 204-215.
    18. Yu, Yanzhe & Cheng, Jie & You, Shijun & Ye, Tianzhen & Zhang, Huan & Fan, Man & Wei, Shen & Liu, Shan, 2019. "Effect of implementing building energy efficiency labeling in China: A case study in Shanghai," Energy Policy, Elsevier, vol. 133(C).
    19. Hu, Wenyu & E, Jiaqiang & Zhang, Feng & Chen, Jingwei & Ma, Yinjie & Leng, Erwei, 2022. "Investigation on cooperative mechanism between convective wind energy harvesting and dust collection during vehicle driving on the highway," Energy, Elsevier, vol. 260(C).
    20. Wei, Haibin & Yang, Dong & Wang, Jilibo & Du, Jinhui, 2020. "Field experiments on the cooling capability of earth-to-air heat exchangers in hot and humid climate," Applied Energy, Elsevier, vol. 276(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:6:p:3612-:d:774756. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.