IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v101y2013icp634-643.html
   My bibliography  Save this article

Estimation of electrical power consumption in subway station design by intelligent approach

Author

Listed:
  • Leung, Philip C.M.
  • Lee, Eric W.M.

Abstract

According to the records of Hong Kong rail operator, MTR Corporation, the weekly electrical consumption of each railway station ranges from 18MWh to 230MWh. Since the electrical consumption of stations is a major factor in the planning of infrastructure, a good prediction of the electrical consumption will greatly assist in the design of the station infrastructure. This study develops an intelligent approach to predict the energy consumption of railway stations. Multi-layered Perceptron (MLP) is adopted to mimic the non-linear correlation between energy consumption, the spatial design of the station, meteorological factors and also the usage of the 19 stations selected. Coefficient of correlation is obtained between the MLP predicted results and the actual collected data to evaluate the performance of the prediction. We apply statistical approach to assess the performance of the developed MLP model. It shows that minimum coefficient of correlation is 0.96 with a 95% confidence level which is considered sufficient for engineering application. This approach is also adopted to predict the profile of the weekly electrical consumption of a selected station. The predicted profile reasonably agrees with that of the actual consumption. This study develops a useful tool to estimate the electrical power consumption of new MTR stations.

Suggested Citation

  • Leung, Philip C.M. & Lee, Eric W.M., 2013. "Estimation of electrical power consumption in subway station design by intelligent approach," Applied Energy, Elsevier, vol. 101(C), pages 634-643.
  • Handle: RePEc:eee:appene:v:101:y:2013:i:c:p:634-643
    DOI: 10.1016/j.apenergy.2012.07.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261912005296
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2012.07.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rehdanz, Katrin, 2007. "Determinants of residential space heating expenditures in Germany," Energy Economics, Elsevier, vol. 29(2), pages 167-182, March.
    2. Zhang, Guoqiang & Eddy Patuwo, B. & Y. Hu, Michael, 1998. "Forecasting with artificial neural networks:: The state of the art," International Journal of Forecasting, Elsevier, vol. 14(1), pages 35-62, March.
    3. Kalogirou, Soteris A., 2000. "Applications of artificial neural-networks for energy systems," Applied Energy, Elsevier, vol. 67(1-2), pages 17-35, September.
    4. Basbous, Tammam & Younes, Rafic & Ilinca, Adrian & Perron, Jean, 2012. "A new hybrid pneumatic combustion engine to improve fuel consumption of wind–Diesel power system for non-interconnected areas," Applied Energy, Elsevier, vol. 96(C), pages 459-476.
    5. Gutiérrez, R. & Gutiérrez-Sánchez, R. & Nafidi, A., 2006. "Electricity consumption in Morocco: Stochastic Gompertz diffusion analysis with exogenous factors," Applied Energy, Elsevier, vol. 83(10), pages 1139-1151, October.
    6. Kilpatrick, R.A.R. & Banfill, P.F.G. & Jenkins, D.P., 2011. "Methodology for characterising domestic electrical demand by usage categories," Applied Energy, Elsevier, vol. 88(3), pages 612-621, March.
    7. Tang, Ling & Yu, Lean & Wang, Shuai & Li, Jianping & Wang, Shouyang, 2012. "A novel hybrid ensemble learning paradigm for nuclear energy consumption forecasting," Applied Energy, Elsevier, vol. 93(C), pages 432-443.
    8. Hill, Tim & Marquez, Leorey & O'Connor, Marcus & Remus, William, 1994. "Artificial neural network models for forecasting and decision making," International Journal of Forecasting, Elsevier, vol. 10(1), pages 5-15, June.
    9. Uri, Noel D., 1978. "Forecasting peak system load using a combined time series and econometric model," Applied Energy, Elsevier, vol. 4(3), pages 219-227, July.
    10. Deeble, V.C. & Probert, S.D., 1986. "Straight-line correlations for annual energy-consumption predictions?," Applied Energy, Elsevier, vol. 25(1), pages 23-39.
    11. Kaldellis, J.K. & Kavadias, K.A. & Filios, A.E., 2009. "A new computational algorithm for the calculation of maximum wind energy penetration in autonomous electrical generation systems," Applied Energy, Elsevier, vol. 86(7-8), pages 1011-1023, July.
    12. Jebaraj, S. & Iniyan, S., 2006. "A review of energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(4), pages 281-311, August.
    13. Kadoshin, Shiro & Nishiyama, Takashi & Ito, Toshihide, 2000. "The trend in current and near future energy consumption from a statistical perspective," Applied Energy, Elsevier, vol. 67(4), pages 407-417, December.
    14. Kankal, Murat & AkpInar, Adem & Kömürcü, Murat Ihsan & Özsahin, Talat Sükrü, 2011. "Modeling and forecasting of Turkey's energy consumption using socio-economic and demographic variables," Applied Energy, Elsevier, vol. 88(5), pages 1927-1939, May.
    15. Wong, S.L. & Wan, Kevin K.W. & Lam, Tony N.T., 2010. "Artificial neural networks for energy analysis of office buildings with daylighting," Applied Energy, Elsevier, vol. 87(2), pages 551-557, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nam, KiJeon & Heo, SungKu & Li, Qian & Loy-Benitez, Jorge & Kim, MinJeong & Park, DuckShin & Yoo, ChangKyoo, 2020. "A proactive energy-efficient optimal ventilation system using artificial intelligent techniques under outdoor air quality conditions," Applied Energy, Elsevier, vol. 266(C).
    2. Mangkuto, R.A. & Wang, S. & Meerbeek, B.W. & Aries, M.B.C. & van Loenen, E.J., 2014. "Lighting performance and electrical energy consumption of a virtual window prototype," Applied Energy, Elsevier, vol. 135(C), pages 261-273.
    3. He, Deqiang & Yang, Yanjie & Chen, Yanjun & Deng, Jianxin & Shan, Sheng & Liu, Jianren & Li, Xianwang, 2020. "An integrated optimization model of metro energy consumption based on regenerative energy and passenger transfer," Applied Energy, Elsevier, vol. 264(C).
    4. Yu, Yanzhe & You, Shijun & Zhang, Huan & Ye, Tianzhen & Wang, Yaran & Wei, Shen, 2021. "A review on available energy saving strategies for heating, ventilation and air conditioning in underground metro stations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    5. Xuesong Feng & Hanxiao Zhang & Yong Ding & Zhili Liu & Hongqin Peng & Bin Xu, 2013. "A Review Study on Traction Energy Saving of Rail Transport," Discrete Dynamics in Nature and Society, Hindawi, vol. 2013, pages 1-9, September.
    6. Wang, Lan & Lee, Eric W.M. & Yuen, Richard K.K., 2018. "Novel dynamic forecasting model for building cooling loads combining an artificial neural network and an ensemble approach," Applied Energy, Elsevier, vol. 228(C), pages 1740-1753.
    7. He, Deqiang & Teng, Xiaoliang & Chen, Yanjun & Liu, Bin & Wang, Heliang & Li, Xianwang & Ma, Rui, 2022. "Energy saving in metro ventilation system based on multi-factor analysis and air characteristics of piston vent," Applied Energy, Elsevier, vol. 307(C).
    8. Shen, Xiaojun & Wei, Hongyang & Wei, Li, 2020. "Study of trackside photovoltaic power integration into the traction power system of suburban elevated urban rail transit line," Applied Energy, Elsevier, vol. 260(C).
    9. Casals, Miquel & Gangolells, Marta & Forcada, Núria & Macarulla, Marcel & Giretti, Alberto & Vaccarini, Massimo, 2016. "SEAM4US: An intelligent energy management system for underground stations," Applied Energy, Elsevier, vol. 166(C), pages 150-164.
    10. Asif Afzal & Saad Alshahrani & Abdulrahman Alrobaian & Abdulrajak Buradi & Sher Afghan Khan, 2021. "Power Plant Energy Predictions Based on Thermal Factors Using Ridge and Support Vector Regressor Algorithms," Energies, MDPI, vol. 14(21), pages 1-22, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jebaraj, S. & Iniyan, S., 2006. "A review of energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(4), pages 281-311, August.
    2. Benedetti, Miriam & Cesarotti, Vittorio & Introna, Vito & Serranti, Jacopo, 2016. "Energy consumption control automation using Artificial Neural Networks and adaptive algorithms: Proposal of a new methodology and case study," Applied Energy, Elsevier, vol. 165(C), pages 60-71.
    3. Huang, Runya & Huang, Guohe & Cheng, Guanhui & Dong, Cong, 2017. "Regional heuristic interval recourse power system analysis for electricity and environmental systems planning in Eastern China," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 185-201.
    4. Jeong, Kwangbok & Koo, Choongwan & Hong, Taehoon, 2014. "An estimation model for determining the annual energy cost budget in educational facilities using SARIMA (seasonal autoregressive integrated moving average) and ANN (artificial neural network)," Energy, Elsevier, vol. 71(C), pages 71-79.
    5. Shen, Meng & Lu, Yujie & Wei, Kua Harn & Cui, Qingbin, 2020. "Prediction of household electricity consumption and effectiveness of concerted intervention strategies based on occupant behaviour and personality traits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    6. Debnath, Kumar Biswajit & Mourshed, Monjur, 2018. "Forecasting methods in energy planning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 297-325.
    7. Jani, D.B. & Mishra, Manish & Sahoo, P.K., 2017. "Application of artificial neural network for predicting performance of solid desiccant cooling systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 352-366.
    8. Mioara CHIRITA & Daniela SARPE, 2011. "Usefulness of Artificial Neural Networks for Predicting Financial and Economic Crisis," Risk in Contemporary Economy, "Dunarea de Jos" University of Galati, Faculty of Economics and Business Administration, pages 44-48.
    9. Azadeh, A. & Babazadeh, R. & Asadzadeh, S.M., 2013. "Optimum estimation and forecasting of renewable energy consumption by artificial neural networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 605-612.
    10. Laimon, Mohamd & Mai, Thanh & Goh, Steven & Yusaf, Talal, 2022. "System dynamics modelling to assess the impact of renewable energy systems and energy efficiency on the performance of the energy sector," Renewable Energy, Elsevier, vol. 193(C), pages 1041-1048.
    11. Fu, Sibao & Li, Yongwu & Sun, Shaolong & Li, Hongtao, 2019. "Evolutionary support vector machine for RMB exchange rate forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 692-704.
    12. Salari, Mahmoud & Javid, Roxana J., 2017. "Modeling household energy expenditure in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 822-832.
    13. Wang, Lan & Lee, Eric W.M. & Yuen, Richard K.K., 2018. "Novel dynamic forecasting model for building cooling loads combining an artificial neural network and an ensemble approach," Applied Energy, Elsevier, vol. 228(C), pages 1740-1753.
    14. Insung Kang & Kwang Ho Lee & Je Hyeon Lee & Jin Woo Moon, 2018. "Artificial Neural Network–Based Control of a Variable Refrigerant Flow System in the Cooling Season," Energies, MDPI, vol. 11(7), pages 1-15, June.
    15. Sun, Shaolong & Lu, Hongxu & Tsui, Kwok-Leung & Wang, Shouyang, 2019. "Nonlinear vector auto-regression neural network for forecasting air passenger flow," Journal of Air Transport Management, Elsevier, vol. 78(C), pages 54-62.
    16. Niemierko, Rochus & Töppel, Jannick & Tränkler, Timm, 2019. "A D-vine copula quantile regression approach for the prediction of residential heating energy consumption based on historical data," Applied Energy, Elsevier, vol. 233, pages 691-708.
    17. Oscar Claveria & Salvador Torra, 2013. "“Forecasting Business surveys indicators: neural networks vs. time series models”," IREA Working Papers 201320, University of Barcelona, Research Institute of Applied Economics, revised Nov 2013.
    18. Klemm, Christian & Vennemann, Peter, 2021. "Modeling and optimization of multi-energy systems in mixed-use districts: A review of existing methods and approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    19. Melo, A.P. & Cóstola, D. & Lamberts, R. & Hensen, J.L.M., 2014. "Development of surrogate models using artificial neural network for building shell energy labelling," Energy Policy, Elsevier, vol. 69(C), pages 457-466.
    20. Safari, Ali & Davallou, Maryam, 2018. "Oil price forecasting using a hybrid model," Energy, Elsevier, vol. 148(C), pages 49-58.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:101:y:2013:i:c:p:634-643. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.