IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v182y2022icp998-1011.html
   My bibliography  Save this article

Prediction of hydroelectric turbine runner strain signal via cyclostationary decomposition and kriging interpolation

Author

Listed:
  • Pham, Quang Hung
  • Gagnon, Martin
  • Antoni, Jérôme
  • Tahan, Antoine
  • Monette, Christine

Abstract

Strain measurements by gauges can play an important role in analyzing the fatigue damage of the hydroelectric turbine runner. However, these measurements cannot cover every steady-state operating condition due to the experimental limitations. Thus, the aim of this research is to predict the strain signal on runner over every possible steady operating condition using available experimental measurements. The strain signal measured during steady state involves several components (such as periodicity, vortex rope component and stochastic components) which can generate difficulties during the prediction. This paper proposes a solution to predict the runner strain signals by independently interpolating each physical phenomenon over different turbine operating conditions. These components are extracted using cyclostationary decomposition operators. A case study is performed on a Francis hydroelectric turbine to verify the interpolation performance. The proposed methodology can contribute to the fatigue assessment and help to reduce the requirements of infield measurements.

Suggested Citation

  • Pham, Quang Hung & Gagnon, Martin & Antoni, Jérôme & Tahan, Antoine & Monette, Christine, 2022. "Prediction of hydroelectric turbine runner strain signal via cyclostationary decomposition and kriging interpolation," Renewable Energy, Elsevier, vol. 182(C), pages 998-1011.
  • Handle: RePEc:eee:renene:v:182:y:2022:i:c:p:998-1011
    DOI: 10.1016/j.renene.2021.11.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812101586X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.11.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pham, Quang Hung & Gagnon, Martin & Antoni, Jérôme & Tahan, Antoine & Monette, Christine, 2021. "Rainflow-counting matrix interpolation over different operating conditions for hydroelectric turbine fatigue assessment," Renewable Energy, Elsevier, vol. 172(C), pages 465-476.
    2. Liu, Xin & Luo, Yongyao & Wang, Zhengwei, 2016. "A review on fatigue damage mechanism in hydro turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1-14.
    3. Presas, Alexandre & Luo, Yongyao & Wang, Zhengwei & Guo, Bao, 2019. "Fatigue life estimation of Francis turbines based on experimental strain measurements: Review of the actual data and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 96-110.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Huan & Li, Wenfeng & Hou, Yaochun & Wu, Peng & Huang, Bin & Wu, Kelin & Wu, Dazhuan, 2023. "Recognition of the developing vortex rope in Francis turbine draft tube based on PSO-CS2," Renewable Energy, Elsevier, vol. 217(C).
    2. Shande Li & Shuai Yuan & Shaowei Liu & Jian Wen & Qibai Huang, 2022. "Research on an Accuracy Optimization Algorithm of Kriging Model Based on a Multipoint Filling Criterion," Mathematics, MDPI, vol. 10(9), pages 1-11, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rafel Roig & Xavier Sánchez-Botello & Xavier Escaler & Berhanu Mulu & Carl-Maikel Högström, 2022. "On the Rotating Vortex Rope and Its Induced Structural Response in a Kaplan Turbine Model," Energies, MDPI, vol. 15(17), pages 1-19, August.
    2. Kougias, Ioannis & Aggidis, George & Avellan, François & Deniz, Sabri & Lundin, Urban & Moro, Alberto & Muntean, Sebastian & Novara, Daniele & Pérez-Díaz, Juan Ignacio & Quaranta, Emanuele & Schild, P, 2019. "Analysis of emerging technologies in the hydropower sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    3. Pham, Quang Hung & Gagnon, Martin & Antoni, Jérôme & Tahan, Antoine & Monette, Christine, 2021. "Rainflow-counting matrix interpolation over different operating conditions for hydroelectric turbine fatigue assessment," Renewable Energy, Elsevier, vol. 172(C), pages 465-476.
    4. Dollon, Q. & Antoni, J. & Tahan, A. & Gagnon, M. & Monette, C., 2021. "Operational Modal Analysis of hydroelectric turbines using an order based likelihood approach," Renewable Energy, Elsevier, vol. 165(P1), pages 799-811.
    5. Valentín, David & Presas, Alexandre & Egusquiza, Mònica & Drommi, Jean-Louis & Valero, Carme, 2022. "Benefits of battery hybridization in hydraulic turbines. Wear and tear evaluation in a Kaplan prototype," Renewable Energy, Elsevier, vol. 199(C), pages 35-43.
    6. Ming Zhang & David Valentin & Carme Valero & Mònica Egusquiza & Weiqiang Zhao, 2018. "Numerical Study on the Dynamic Behavior of a Francis Turbine Runner Model with a Crack," Energies, MDPI, vol. 11(7), pages 1-18, June.
    7. Alfredo Guardo & Alfred Fontanals & Mònica Egusquiza & Carme Valero & Eduard Egusquiza, 2021. "Characterization of the Effects of Ingested Bodies on the Rotor–Stator Interaction of Hydraulic Turbines," Energies, MDPI, vol. 14(20), pages 1-16, October.
    8. Sun, Longgang & Xu, Hongyang & Li, Chenxi & Guo, Pengcheng & Xu, Zhuofei, 2024. "Unsteady assessment and alleviation of inter-blade vortex in Francis turbine," Applied Energy, Elsevier, vol. 358(C).
    9. Wei-Hua Hu & De-Hui Tang & Ming Wang & Jun-Le Liu & Zuo-Hua Li & Wei Lu & Jun Teng & Samir Said & Rolf. G. Rohrmann, 2020. "Resonance Monitoring of a Horizontal Wind Turbine by Strain-Based Automated Operational Modal Analysis," Energies, MDPI, vol. 13(3), pages 1-21, January.
    10. Geng, Xinmin & Zhou, Ye & Zhao, Weiqiang & Shi, Li & Chen, Diyi & Bi, Xiaojian & Xu, Beibei, 2024. "Pricing ancillary service of a Francis hydroelectric generating system to promote renewable energy integration in a clean energy base: Tariff compensation of deep peak regulation," Renewable Energy, Elsevier, vol. 226(C).
    11. Haixia Yang & Qilian He & Xingxing Huang & Mengqi Yang & Huili Bi & Zhengwei Wang, 2022. "Experimental and Numerical Investigation of Rotor–Stator Interaction in a Large Prototype Pump–Turbine in Turbine Mode," Energies, MDPI, vol. 15(15), pages 1-24, July.
    12. Presas, Alexandre & Luo, Yongyao & Wang, Zhengwei & Guo, Bao, 2019. "Fatigue life estimation of Francis turbines based on experimental strain measurements: Review of the actual data and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 96-110.
    13. Valentín, David & Presas, Alexandre & Valero, Carme & Egusquiza, Mònica & Egusquiza, Eduard & Gomes, Joao & Avellan, François, 2020. "Transposition of the mechanical behavior from model to prototype of Francis turbines," Renewable Energy, Elsevier, vol. 152(C), pages 1011-1023.
    14. Raluca Gabriela Iovănel & Arash Soltani Dehkharqani & Diana Maria Bucur & Michel Jose Cervantes, 2022. "Numerical Simulation and Experimental Validation of a Kaplan Prototype Turbine Operating on a Cam Curve," Energies, MDPI, vol. 15(11), pages 1-24, June.
    15. Trivedi, Chirag & Agnalt, Einar & Dahlhaug, Ole Gunnar, 2017. "Investigations of unsteady pressure loading in a Francis turbine during variable-speed operation," Renewable Energy, Elsevier, vol. 113(C), pages 397-410.
    16. Jie Li & Chongyang Han & Weibin Wu & Ting Tang & Xiao Ran & Zefeng Zheng & Shunli Sun, 2022. "Load Spectrum Compilation Method of Hybrid Electric Vehicle Reducers Based on Multi-Criteria Decision Making," Energies, MDPI, vol. 15(9), pages 1-18, April.
    17. Trivedi, Chirag & Iliev, Igor & Dahlhaug, Ole Gunnar & Markov, Zoran & Engstrom, Fredrik & Lysaker, Henning, 2020. "Investigation of a Francis turbine during speed variation: Inception of cavitation," Renewable Energy, Elsevier, vol. 166(C), pages 147-162.
    18. Kumar, Sandeep & Cervantes, Michel J. & Gandhi, Bhupendra K., 2021. "Rotating vortex rope formation and mitigation in draft tube of hydro turbines – A review from experimental perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    19. Li, Deyou & Fu, Xiaolong & Zuo, Zhigang & Wang, Hongjie & Li, Zhenggui & Liu, Shuhong & Wei, Xianzhu, 2019. "Investigation methods for analysis of transient phenomena concerning design and operation of hydraulic-machine systems—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 26-46.
    20. Wang, Wei & Zhou, Lingjiu & Xia, Xiang & Tao, Ran, 2021. "Analysis of the hydrodynamic damping characteristics on a symmetrical hydrofoil," Renewable Energy, Elsevier, vol. 178(C), pages 821-829.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:182:y:2022:i:c:p:998-1011. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.