IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v135y2021ics1364032120305141.html
   My bibliography  Save this article

Potential hazards posed by biogas plants

Author

Listed:
  • Stolecka, Katarzyna
  • Rusin, Andrzej

Abstract

One effective method of clean energy generation is to use biogas. The biogas production technologies are now highly developed, especially at the level of local biogas plants. Unfortunately, it has been impossible to avoid in-service fatal accidents. Therefore, the design and construction of new technological installations intended for biogas large-scale production have to take account of the plant safe operation. In the first place, this applies to the course of industrial processes and to potential failures that may occur in them due to the flammability and toxicity of biogas constituents. This paper is focused on the hazards that biogas poses to human health and life. It presents the hazard zones arising due to possible scenarios following a release of biogas from a biogas plant. Probit functions and numerical modelling of the spread of thermal radiation due to a fire and of the toxic cloud arising therefrom are used to calculate the probability of serious injury to health and a loss of life depending on the distance from the gas release site. It is estimated that for a high-pressure tank containing 3000 m3 of biogas under the pressure of 10 MPa the life-threatening zone due to a potential fire of released gas has the range of about 30 m. There is about 10 m hazard zone related to the gas explosion, and the zone with the risk of poisoning due to the gas cloud toxic concentration has the range of about 20 m from the failure site.

Suggested Citation

  • Stolecka, Katarzyna & Rusin, Andrzej, 2021. "Potential hazards posed by biogas plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
  • Handle: RePEc:eee:rensus:v:135:y:2021:i:c:s1364032120305141
    DOI: 10.1016/j.rser.2020.110225
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032120305141
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2020.110225?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stolecka, Katarzyna & Rusin, Andrzej, 2020. "Analysis of hazards related to syngas production and transport," Renewable Energy, Elsevier, vol. 146(C), pages 2535-2555.
    2. Tabatabaei, Meisam & Aghbashlo, Mortaza & Valijanian, Elena & Kazemi Shariat Panahi, Hamed & Nizami, Abdul-Sattar & Ghanavati, Hossein & Sulaiman, Alawi & Mirmohamadsadeghi, Safoora & Karimi, Keikhosr, 2020. "A comprehensive review on recent biological innovations to improve biogas production, Part 1: Upstream strategies," Renewable Energy, Elsevier, vol. 146(C), pages 1204-1220.
    3. Khalil, Munawar & Berawi, Mohammed Ali & Heryanto, Rudi & Rizalie, Akhmad, 2019. "Waste to energy technology: The potential of sustainable biogas production from animal waste in Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 323-331.
    4. Casson Moreno, Valeria & Papasidero, Salvatore & Scarponi, Giordano Emrys & Guglielmi, Daniele & Cozzani, Valerio, 2016. "Analysis of accidents in biogas production and upgrading," Renewable Energy, Elsevier, vol. 96(PB), pages 1127-1134.
    5. Xue, Shengrong & Song, Jinghui & Wang, Xiaojiao & Shang, Zezhou & Sheng, Chenjing & Li, Chongyuan & Zhu, Yufan & Liu, Jingyu, 2020. "A systematic comparison of biogas development and related policies between China and Europe and corresponding insights," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    6. Tabatabaei, Meisam & Aghbashlo, Mortaza & Valijanian, Elena & Kazemi Shariat Panahi, Hamed & Nizami, Abdul-Sattar & Ghanavati, Hossein & Sulaiman, Alawi & Mirmohamadsadeghi, Safoora & Karimi, Keikhosr, 2020. "A comprehensive review on recent biological innovations to improve biogas production, Part 2: Mainstream and downstream strategies," Renewable Energy, Elsevier, vol. 146(C), pages 1392-1407.
    7. Sahoo, Kamalakanta & Mani, Sudhagar, 2019. "Economic and environmental impacts of an integrated-state anaerobic digestion system to produce compressed natural gas from organic wastes and energy crops," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    8. Vilvert, Amanda Junkes & Saldeira Junior, Joaquim Carlos & Bautitz, Ivonete Rossi & Zenatti, Dilcemara Cristina & Andrade, Maurício Guy & Hermes, Eliane, 2020. "Minimization of energy demand in slaughterhouses: Estimated production of biogas generated from the effluent," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    9. Gerboni, R. & Salvador, E., 2009. "Hydrogen transportation systems: Elements of risk analysis," Energy, Elsevier, vol. 34(12), pages 2223-2229.
    10. Shane, Agabu & Gheewala, Shabbir H. & Phiri, Seveliano, 2017. "Rural domestic biogas supply model for Zambia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 683-697.
    11. Yu, Qiong & Liu, Ronghou & Li, Kun & Ma, Ruijie, 2019. "A review of crop straw pretreatment methods for biogas production by anaerobic digestion in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 51-58.
    12. A Aziz, Md Maniruzzaman & Kassim, Khairul Anuar & ElSergany, Moetaz & Anuar, Syed & Jorat, M. Ehsan & Yaacob, H. & Ahsan, Amimul & Imteaz, Monzur A. & Arifuzzaman,, 2020. "Recent advances on palm oil mill effluent (POME) pretreatment and anaerobic reactor for sustainable biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    13. Trávníček, Petr & Kotek, Luboš & Junga, Petr & Vítěz, Tomáš & Drápela, Karel & Chovanec, Jan, 2018. "Quantitative analyses of biogas plant accidents in Europe," Renewable Energy, Elsevier, vol. 122(C), pages 89-97.
    14. Kamp, Linda Manon & Bermúdez Forn, Esteban, 2016. "Ethiopia׳s emerging domestic biogas sector: Current status, bottlenecks and drivers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 475-488.
    15. Casson Moreno, Valeria & Guglielmi, Daniele & Cozzani, Valerio, 2018. "Identification of critical safety barriers in biogas facilities," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 81-94.
    16. Córdova, Olivia & Santis, Julissa & Ruiz-Fillipi, Gonzalo & Zuñiga, María Elvira & Fermoso, Fernando G. & Chamy, Rolando, 2018. "Microalgae digestive pretreatment for increasing biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2806-2813.
    17. Achinas, Spyridon & Willem Euverink, Gerrit Jan, 2020. "Rambling facets of manure-based biogas production in Europe: A briefing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    18. Kang, Do Won & Kim, Tong Seop & Hur, Kwang Beom & Park, Jung Keuk, 2012. "The effect of firing biogas on the performance and operating characteristics of simple and recuperative cycle gas turbine combined heat and power systems," Applied Energy, Elsevier, vol. 93(C), pages 215-228.
    19. Zain, Munirah Md & Mohamed, Abdul Rahman, 2018. "An overview on conversion technologies to produce value added products from CH4 and CO2 as major biogas constituents," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 56-63.
    20. Sadiq Y, Ragadia & Iyer, Rajesh C., 2020. "Experimental investigations on the influence of compression ratio and piston crown geometry on the performance of biogas fuelled small spark ignition engine," Renewable Energy, Elsevier, vol. 146(C), pages 997-1009.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Faisal A. Osra & Moussa Sobh Elbisy & Hasan Abdullah Mosaıbah & Khalid Osra & Mirac Nur Ciner & H. Kurtulus Ozcan, 2024. "Environmental Impact Assessment of a Dumping Site: A Case Study of Kakia Dumping Site," Sustainability, MDPI, vol. 16(10), pages 1-21, May.
    2. Mateusz Klejnowski & Katarzyna Stolecka-Antczak, 2024. "The Influence of Hydrogen Concentration on the Hazards Associated with the Use of Coke Oven Gas," Energies, MDPI, vol. 17(19), pages 1-16, September.
    3. Mulu, Elshaday & M'Arimi, Milton M. & Ramkat, Rose C., 2021. "A review of recent developments in application of low cost natural materials in purification and upgrade of biogas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    4. Marcin Zieliński & Joanna Kazimierowicz & Marcin Dębowski, 2022. "Advantages and Limitations of Anaerobic Wastewater Treatment—Technological Basics, Development Directions, and Technological Innovations," Energies, MDPI, vol. 16(1), pages 1-39, December.
    5. Grzegorz Przydatek & Agnieszka Generowicz & Włodzimierz Kanownik, 2024. "Evaluation of the Activity of a Municipal Waste Landfill Site in the Operational and Non-Operational Sectors Based on Landfill Gas Productivity," Energies, MDPI, vol. 17(10), pages 1-16, May.
    6. Tavera-Ruiz, C. & Martí-Herrero, J. & Mendieta, O. & Jaimes-Estévez, J. & Gauthier-Maradei, P. & Azimov, U. & Escalante, H. & Castro, L., 2023. "Current understanding and perspectives on anaerobic digestion in developing countries: Colombia case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    7. Wu, Di & Li, Lei & Peng, Yun & Yang, Pingjin & Peng, Xuya & Sun, Yongming & Wang, Xiaoming, 2021. "State indicators of anaerobic digestion: A critical review on process monitoring and diagnosis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    8. Andrzej Rusin & Katarzyna Stolecka-Antczak, 2023. "Assessment of the Safety of Transport of the Natural Gas–Ammonia Mixture," Energies, MDPI, vol. 16(5), pages 1-20, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xuemei & Yan, Rui & Zhao, Yuying & Cheng, Shikun & Han, Yanzhao & Yang, Shuo & Cai, Di & Mang, Heinz-Peter & Li, Zifu, 2020. "Biogas standard system in China," Renewable Energy, Elsevier, vol. 157(C), pages 1265-1273.
    2. Ni, Ji-Qin, 2024. "A review of household and industrial anaerobic digestion in Asia: Biogas development and safety incidents," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    3. Khan, Muhammad Usman & Lee, Jonathan Tian En & Bashir, Muhammad Aamir & Dissanayake, Pavani Dulanja & Ok, Yong Sik & Tong, Yen Wah & Shariati, Mohammad Ali & Wu, Sarah & Ahring, Birgitte Kiaer, 2021. "Current status of biogas upgrading for direct biomethane use: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    4. Apoorva Upadhyay & Andrey A. Kovalev & Elena A. Zhuravleva & Dmitriy A. Kovalev & Yuriy V. Litti & Shyam Kumar Masakapalli & Nidhi Pareek & Vivekanand Vivekanand, 2022. "Recent Development in Physical, Chemical, Biological and Hybrid Biogas Upgradation Techniques," Sustainability, MDPI, vol. 15(1), pages 1-30, December.
    5. Hollas, C.E. & Bolsan, A.C. & Chini, A. & Venturin, B. & Bonassa, G. & Cândido, D. & Antes, F.G. & Steinmetz, R.L.R. & Prado, N.V. & Kunz, A., 2021. "Effects of swine manure storage time on solid-liquid separation and biogas production: A life-cycle assessment approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    6. Ankita Das & Sandeep Das & Nandita Das & Prisha Pandey & Birson Ingti & Vladimir Panchenko & Vadim Bolshev & Andrey Kovalev & Piyush Pandey, 2023. "Advancements and Innovations in Harnessing Microbial Processes for Enhanced Biogas Production from Waste Materials," Agriculture, MDPI, vol. 13(9), pages 1-34, August.
    7. Zhao Xin-gang & Wang Wei & Hu Shuran & Lu Wenjie, 2023. "How to Promote the Application of Biogas Power Technology: A Perspective of Incentive Policy," Energies, MDPI, vol. 16(4), pages 1-11, February.
    8. Yanbo Wang & Boyao Zhi & Shumin Xiang & Guangxin Ren & Yongzhong Feng & Gaihe Yang & Xiaojiao Wang, 2023. "China’s Biogas Industry’s Sustainable Transition to a Low-Carbon Plan—A Socio-Technical Perspective," Sustainability, MDPI, vol. 15(6), pages 1-20, March.
    9. Lei Zheng & Jingang Chen & Mingyue Zhao & Shikun Cheng & Li-Pang Wang & Heinz-Peter Mang & Zifu Li, 2020. "What Could China Give to and Take from Other Countries in Terms of the Development of the Biogas Industry?," Sustainability, MDPI, vol. 12(4), pages 1-21, February.
    10. Osman, Ahmed I. & Qasim, Umair & Jamil, Farrukh & Al-Muhtaseb, Ala'a H. & Jrai, Ahmad Abu & Al-Riyami, Mohammed & Al-Maawali, Suhaib & Al-Haj, Lamya & Al-Hinai, Amer & Al-Abri, Mohammed & Inayat, Abra, 2021. "Bioethanol and biodiesel: Bibliometric mapping, policies and future needs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    11. Alejandro Moure Abelenda & Kirk T. Semple & George Aggidis & Farid Aiouache, 2022. "Circularity of Bioenergy Residues: Acidification of Anaerobic Digestate Prior to Addition of Wood Ash," Sustainability, MDPI, vol. 14(5), pages 1-18, March.
    12. Yek, Peter Nai Yuh & Cheng, Yoke Wang & Liew, Rock Keey & Wan Mahari, Wan Adibah & Ong, Hwai Chyuan & Chen, Wei-Hsin & Peng, Wanxi & Park, Young-Kwon & Sonne, Christian & Kong, Sieng Huat & Tabatabaei, 2021. "Progress in the torrefaction technology for upgrading oil palm wastes to energy-dense biochar: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    13. Roopnarain, Ashira & Rama, Haripriya & Ndaba, Busiswa & Bello-Akinosho, Maryam & Bamuza-Pemu, Emomotimi & Adeleke, Rasheed, 2021. "Unravelling the anaerobic digestion ‘black box’: Biotechnological approaches for process optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    14. Du, Ran & Li, Chong & Lin, Weichao & Lin, Carol Sze Ki & Yan, Jianbin, 2022. "Domesticating a bacterial consortium for efficient lignocellulosic biomass conversion," Renewable Energy, Elsevier, vol. 189(C), pages 359-368.
    15. Soltanian, Salman & Kalogirou, Soteris A. & Ranjbari, Meisam & Amiri, Hamid & Mahian, Omid & Khoshnevisan, Benyamin & Jafary, Tahereh & Nizami, Abdul-Sattar & Gupta, Vijai Kumar & Aghaei, Siavash & Pe, 2022. "Exergetic sustainability analysis of municipal solid waste treatment systems: A systematic critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    16. Safieddin Ardebili, Seyed Mohammad, 2020. "Green electricity generation potential from biogas produced by anaerobic digestion of farm animal waste and agriculture residues in Iran," Renewable Energy, Elsevier, vol. 154(C), pages 29-37.
    17. Zheng, Lei & Cheng, Shikun & Han, Yanzhao & Wang, Min & Xiang, Yue & Guo, Jiali & Cai, Di & Mang, Heinz-Peter & Dong, Taili & Li, Zifu & Yan, Zhengxu & Men, Yu, 2020. "Bio-natural gas industry in China: Current status and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    18. Rivera-Hernández, Yessica & Hernández-Eugenio, Guadalupe & Balagurusamy, Nagamani & Espinosa-Solares, Teodoro, 2022. "Sargassum-pig manure co-digestion: An alternative for bioenergy production and treating a polluting coastal waste," Renewable Energy, Elsevier, vol. 199(C), pages 1336-1344.
    19. Jakub Sikora & Marcin Niemiec & Anna Szeląg-Sikora & Zofia Gródek-Szostak & Maciej Kuboń & Monika Komorowska, 2020. "The Effect of the Addition of a Fat Emulsifier on the Amount and Quality of the Obtained Biogas," Energies, MDPI, vol. 13(7), pages 1-12, April.
    20. Hu, Yulin & Gong, Mengyue & Xing, Xuelian & Wang, Haoyu & Zeng, Yimin & Xu, Chunbao Charles, 2020. "Supercritical water gasification of biomass model compounds: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:135:y:2021:i:c:s1364032120305141. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.