IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v149y2021ics1364032121006298.html
   My bibliography  Save this article

Current status of biogas upgrading for direct biomethane use: A review

Author

Listed:
  • Khan, Muhammad Usman
  • Lee, Jonathan Tian En
  • Bashir, Muhammad Aamir
  • Dissanayake, Pavani Dulanja
  • Ok, Yong Sik
  • Tong, Yen Wah
  • Shariati, Mohammad Ali
  • Wu, Sarah
  • Ahring, Birgitte Kiaer

Abstract

Anaerobic digestion produces biogas, a mixture of CH4 and CO2, where CH4 is a low cost, environmentally friendly, and renewable energy source. The application of biogas production is increasing rapidly as a means of reducing the pollution impact of organic biomasses. However, biogas contains unwanted elements such as hydrogen sulfide, carbon monoxide, siloxanes, and carbon dioxide. To remove these elements, several biogas upgrading technologies like water scrubbing, amine scrubbing, pressure swing adsorption, and membrane separation have been developed and are being used at various commercial scales. Problems with these methods are high energy consumption, the use of expensive chemicals, and high operating cost. Therefore, a major effort is currently underway to improve the design of existing methods as well as developing innovative new upgrading technologies such as cryogenic separation and biological upgrading. This review intends to provide a comprehensive overview of the limitations with the existing upgrading technologies along with recent advances in physical, chemical, and biological biogas upgrading technologies (e.g., pressure swing adsorption, membrane separation, biochar adsorption and CO2 conversion by biological organisms) and further into possible future solutions, such as hybrid systems. Comparative studies of process complexities and associated economic concerns are also provided, and future perspectives that may facilitate research into sustainable biogas upgrading technologies are discussed, focusing in particular on cryogenic separation, novel biological techniques, biochar based upgrading and hybrid technologies incorporating two or more different methods seamlessly integrated.

Suggested Citation

  • Khan, Muhammad Usman & Lee, Jonathan Tian En & Bashir, Muhammad Aamir & Dissanayake, Pavani Dulanja & Ok, Yong Sik & Tong, Yen Wah & Shariati, Mohammad Ali & Wu, Sarah & Ahring, Birgitte Kiaer, 2021. "Current status of biogas upgrading for direct biomethane use: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
  • Handle: RePEc:eee:rensus:v:149:y:2021:i:c:s1364032121006298
    DOI: 10.1016/j.rser.2021.111343
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121006298
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111343?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. ,, 1998. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 14(5), pages 687-698, October.
    2. Kadam, Rahul & Panwar, N.L., 2017. "Recent advancement in biogas enrichment and its applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 892-903.
    3. Wang, Honglin & Ma, Chunyan & Yang, Zhuhong & Lu, Xiaohua & Ji, Xiaoyan, 2020. "Improving high-pressure water scrubbing through process integration and solvent selection for biogas upgrading," Applied Energy, Elsevier, vol. 276(C).
    4. Achinas, Spyridon & Willem Euverink, Gerrit Jan, 2020. "Rambling facets of manure-based biogas production in Europe: A briefing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    5. Lombardi, Lidia & Francini, Giovanni, 2020. "Techno-economic and environmental assessment of the main biogas upgrading technologies," Renewable Energy, Elsevier, vol. 156(C), pages 440-458.
    6. Tabatabaei, Meisam & Aghbashlo, Mortaza & Valijanian, Elena & Kazemi Shariat Panahi, Hamed & Nizami, Abdul-Sattar & Ghanavati, Hossein & Sulaiman, Alawi & Mirmohamadsadeghi, Safoora & Karimi, Keikhosr, 2020. "A comprehensive review on recent biological innovations to improve biogas production, Part 1: Upstream strategies," Renewable Energy, Elsevier, vol. 146(C), pages 1204-1220.
    7. Kao, Chien-Ya & Chiu, Sheng-Yi & Huang, Tzu-Ting & Dai, Le & Hsu, Ling-Kang & Lin, Chih-Sheng, 2012. "Ability of a mutant strain of the microalga Chlorella sp. to capture carbon dioxide for biogas upgrading," Applied Energy, Elsevier, vol. 93(C), pages 176-183.
    8. Song, Chunfeng & Liu, Qingling & Deng, Shuai & Li, Hailong & Kitamura, Yutaka, 2019. "Cryogenic-based CO2 capture technologies: State-of-the-art developments and current challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 265-278.
    9. Song, Chunfeng & Liu, Qingling & Ji, Na & Deng, Shuai & Zhao, Jun & Li, Yang & Kitamura, Yutaka, 2017. "Reducing the energy consumption of membrane-cryogenic hybrid CO2 capture by process optimization," Energy, Elsevier, vol. 124(C), pages 29-39.
    10. Edyta Słupek & Patrycja Makoś & Jacek Gębicki, 2020. "Theoretical and Economic Evaluation of Low-Cost Deep Eutectic Solvents for Effective Biogas Upgrading to Bio-Methane," Energies, MDPI, vol. 13(13), pages 1-19, July.
    11. Lim, Cheolsoo & Kim, Daigon & Song, Changkeun & Kim, Jeongsoo & Han, Jinseok & Cha, Jun-Seok, 2015. "Performance and emission characteristics of a vehicle fueled with enriched biogas and natural gases," Applied Energy, Elsevier, vol. 139(C), pages 17-29.
    12. Patterson, Tim & Esteves, Sandra & Dinsdale, Richard & Guwy, Alan, 2011. "An evaluation of the policy and techno-economic factors affecting the potential for biogas upgrading for transport fuel use in the UK," Energy Policy, Elsevier, vol. 39(3), pages 1806-1816, March.
    13. Tabatabaei, Meisam & Aghbashlo, Mortaza & Valijanian, Elena & Kazemi Shariat Panahi, Hamed & Nizami, Abdul-Sattar & Ghanavati, Hossein & Sulaiman, Alawi & Mirmohamadsadeghi, Safoora & Karimi, Keikhosr, 2020. "A comprehensive review on recent biological innovations to improve biogas production, Part 2: Mainstream and downstream strategies," Renewable Energy, Elsevier, vol. 146(C), pages 1392-1407.
    14. Barbera, Elena & Menegon, Silvia & Banzato, Donatella & D'Alpaos, Chiara & Bertucco, Alberto, 2019. "From biogas to biomethane: A process simulation-based techno-economic comparison of different upgrading technologies in the Italian context," Renewable Energy, Elsevier, vol. 135(C), pages 663-673.
    15. Baena-Moreno, Francisco M. & Sebastia-Saez, Daniel & Pastor-Pérez, Laura & Reina, Tomas Ramirez, 2021. "Analysis of the potential for biogas upgrading to syngas via catalytic reforming in the United Kingdom," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    16. Tippayawong, N. & Thanompongchart, P., 2010. "Biogas quality upgrade by simultaneous removal of CO2 and H2S in a packed column reactor," Energy, Elsevier, vol. 35(12), pages 4531-4535.
    17. Shen, Yanwen & Linville, Jessica L. & Urgun-Demirtas, Meltem & Schoene, Robin P. & Snyder, Seth W., 2015. "Producing pipeline-quality biomethane via anaerobic digestion of sludge amended with corn stover biochar with in-situ CO2 removal," Applied Energy, Elsevier, vol. 158(C), pages 300-309.
    18. Burkhardt, Marko & Busch, Günter, 2013. "Methanation of hydrogen and carbon dioxide," Applied Energy, Elsevier, vol. 111(C), pages 74-79.
    19. Ciro Florio & Gabriella Fiorentino & Fabiana Corcelli & Sergio Ulgiati & Stefano Dumontet & Joshua Güsewell & Ludger Eltrop, 2019. "A Life Cycle Assessment of Biomethane Production from Waste Feedstock Through Different Upgrading Technologies," Energies, MDPI, vol. 12(4), pages 1-12, February.
    20. Qyyum, Muhammad Abdul & Haider, Junaid & Qadeer, Kinza & Valentina, Valentina & Khan, Amin & Yasin, Muhammad & Aslam, Muhammad & De Guido, Giorgia & Pellegrini, Laura A. & Lee, Moonyong, 2020. "Biogas to liquefied biomethane: Assessment of 3P's–Production, processing, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    21. Cavaignac, Renata S. & Ferreira, Newton L. & Guardani, Roberto, 2021. "Techno-economic and environmental process evaluation of biogas upgrading via amine scrubbing," Renewable Energy, Elsevier, vol. 171(C), pages 868-880.
    22. Yan, Cheng & Zhu, Liandong & Wang, Yanxin, 2016. "Photosynthetic CO2 uptake by microalgae for biogas upgrading and simultaneously biogas slurry decontamination by using of microalgae photobioreactor under various light wavelengths, light intensities,," Applied Energy, Elsevier, vol. 178(C), pages 9-18.
    23. Merlin Christy, P. & Gopinath, L.R. & Divya, D., 2014. "A review on anaerobic decomposition and enhancement of biogas production through enzymes and microorganisms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 167-173.
    24. ,, 1998. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 14(3), pages 381-386, June.
    25. ,, 1998. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 14(4), pages 525-537, August.
    26. Dissanayake, Pavani Dulanja & Choi, Seung Wan & Igalavithana, Avanthi Deshani & Yang, Xiao & Tsang, Daniel C.W. & Wang, Chi-Hwa & Kua, Harn Wei & Lee, Ki Bong & Ok, Yong Sik, 2020. "Sustainable gasification biochar as a high efficiency adsorbent for CO2 capture: A facile method to designer biochar fabrication," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    27. Zhou, Kui & Chaemchuen, Somboon & Verpoort, Francis, 2017. "Alternative materials in technologies for Biogas upgrading via CO2 capture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1414-1441.
    28. Yang, Liangcheng & Ge, Xumeng & Wan, Caixia & Yu, Fei & Li, Yebo, 2014. "Progress and perspectives in converting biogas to transportation fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1133-1152.
    29. Divya, D. & Gopinath, L.R. & Merlin Christy, P., 2015. "A review on current aspects and diverse prospects for enhancing biogas production in sustainable means," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 690-699.
    30. Wang, Zixin & Wang, Tengfei & Si, Buchun & Watson, Jamison & Zhang, Yuanhui, 2021. "Accelerating anaerobic digestion for methane production: Potential role of direct interspecies electron transfer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    31. Pellegrini, Laura Annamaria & De Guido, Giorgia & Langé, Stefano, 2018. "Biogas to liquefied biomethane via cryogenic upgrading technologies," Renewable Energy, Elsevier, vol. 124(C), pages 75-83.
    32. Qyyum, Muhammad Abdul & Dickson, Rofice & Ali Shah, Syed Fahad & Niaz, Haider & Khan, Amin & Liu, J. Jay & Lee, Moonyong, 2021. "Availability, versatility, and viability of feedstocks for hydrogen production: Product space perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    33. Rachbauer, Lydia & Voitl, Gregor & Bochmann, Günther & Fuchs, Werner, 2016. "Biological biogas upgrading capacity of a hydrogenotrophic community in a trickle-bed reactor," Applied Energy, Elsevier, vol. 180(C), pages 483-490.
    34. Sun, Qie & Li, Hailong & Yan, Jinying & Liu, Longcheng & Yu, Zhixin & Yu, Xinhai, 2015. "Selection of appropriate biogas upgrading technology-a review of biogas cleaning, upgrading and utilisation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 521-532.
    35. Leung, Dennis Y.C. & Caramanna, Giorgio & Maroto-Valer, M. Mercedes, 2014. "An overview of current status of carbon dioxide capture and storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 426-443.
    36. ,, 1998. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 14(2), pages 285-292, April.
    37. Scholz, Marco & Melin, Thomas & Wessling, Matthias, 2013. "Transforming biogas into biomethane using membrane technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 199-212.
    38. Hosseinipour, Sayed Amir & Mehrpooya, Mehdi, 2019. "Comparison of the biogas upgrading methods as a transportation fuel," Renewable Energy, Elsevier, vol. 130(C), pages 641-655.
    39. Zabed, Hossain M. & Akter, Suely & Yun, Junhua & Zhang, Guoyan & Zhang, Yufei & Qi, Xianghui, 2020. "Biogas from microalgae: Technologies, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    40. Yan, Cheng & Muñoz, Raúl & Zhu, Liandong & Wang, Yanxin, 2016. "The effects of various LED (light emitting diode) lighting strategies on simultaneous biogas upgrading and biogas slurry nutrient reduction by using of microalgae Chlorella sp," Energy, Elsevier, vol. 106(C), pages 554-561.
    41. ,, 1998. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 14(1), pages 151-159, February.
    42. Sumathi Sethupathi & Ming Zhang & Anushka Upamali Rajapaksha & Sang Ryong Lee & Norhusna Mohamad Nor & Abdul Rahman Mohamed & Mohammad Al-Wabel & Sang Soo Lee & Yong Sik Ok, 2017. "Biochars as Potential Adsorbers of CH 4 , CO 2 and H 2 S," Sustainability, MDPI, vol. 9(1), pages 1-10, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Apoorva Upadhyay & Andrey A. Kovalev & Elena A. Zhuravleva & Dmitriy A. Kovalev & Yuriy V. Litti & Shyam Kumar Masakapalli & Nidhi Pareek & Vivekanand Vivekanand, 2022. "Recent Development in Physical, Chemical, Biological and Hybrid Biogas Upgradation Techniques," Sustainability, MDPI, vol. 15(1), pages 1-30, December.
    2. Tabatabaei, Meisam & Aghbashlo, Mortaza & Valijanian, Elena & Kazemi Shariat Panahi, Hamed & Nizami, Abdul-Sattar & Ghanavati, Hossein & Sulaiman, Alawi & Mirmohamadsadeghi, Safoora & Karimi, Keikhosr, 2020. "A comprehensive review on recent biological innovations to improve biogas production, Part 2: Mainstream and downstream strategies," Renewable Energy, Elsevier, vol. 146(C), pages 1392-1407.
    3. Zheng, Lei & Cheng, Shikun & Han, Yanzhao & Wang, Min & Xiang, Yue & Guo, Jiali & Cai, Di & Mang, Heinz-Peter & Dong, Taili & Li, Zifu & Yan, Zhengxu & Men, Yu, 2020. "Bio-natural gas industry in China: Current status and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    4. Wantz, Eliot & Benizri, David & Dietrich, Nicolas & Hébrard, Gilles, 2022. "Rate-based modeling approach for High Pressure Water Scrubbing with unsteady gas flowrate and multicomponent absorption applied to biogas upgrading," Applied Energy, Elsevier, vol. 312(C).
    5. Qyyum, Muhammad Abdul & Haider, Junaid & Qadeer, Kinza & Valentina, Valentina & Khan, Amin & Yasin, Muhammad & Aslam, Muhammad & De Guido, Giorgia & Pellegrini, Laura A. & Lee, Moonyong, 2020. "Biogas to liquefied biomethane: Assessment of 3P's–Production, processing, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    6. Muhamed Rasit Atelge & Halil Senol & Mohammed Djaafri & Tulin Avci Hansu & David Krisa & Abdulaziz Atabani & Cigdem Eskicioglu & Hamdi Muratçobanoğlu & Sebahattin Unalan & Slimane Kalloum & Nuri Azbar, 2021. "A Critical Overview of the State-of-the-Art Methods for Biogas Purification and Utilization Processes," Sustainability, MDPI, vol. 13(20), pages 1-39, October.
    7. Allen C. Goodman & Miron Stano, 2000. "Hmos and Health Externalities: A Local Public Good Perspective," Public Finance Review, , vol. 28(3), pages 247-269, May.
    8. Bettina Campedelli & Andrea Guerrina & Giulia Romano & Chiara Leardini, 2014. "La performance della rete ospedaliera pubblica della regione Veneto. L?impatto delle variabili ambientali e operative sull?efficienza," MECOSAN, FrancoAngeli Editore, vol. 2014(92), pages 119-142.
    9. Penn Loh & Zoë Ackerman & Joceline Fidalgo & Rebecca Tumposky, 2022. "Co-Education/Co-Research Partnership: A Critical Approach to Co-Learning between Dudley Street Neighborhood Initiative and Tufts University," Social Sciences, MDPI, vol. 11(2), pages 1-17, February.
    10. O'Brien, Raymond & Patacchini, Eleonora, 2003. "Testing the exogeneity assumption in panel data models with "non classical" disturbances," Discussion Paper Series In Economics And Econometrics 0302, Economics Division, School of Social Sciences, University of Southampton.
    11. YongSeog Kim & W. Nick Street & Gary J. Russell & Filippo Menczer, 2005. "Customer Targeting: A Neural Network Approach Guided by Genetic Algorithms," Management Science, INFORMS, vol. 51(2), pages 264-276, February.
    12. Yanling Li & Zita Oravecz & Shuai Zhou & Yosef Bodovski & Ian J. Barnett & Guangqing Chi & Yuan Zhou & Naomi P. Friedman & Scott I. Vrieze & Sy-Miin Chow, 2022. "Bayesian Forecasting with a Regime-Switching Zero-Inflated Multilevel Poisson Regression Model: An Application to Adolescent Alcohol Use with Spatial Covariates," Psychometrika, Springer;The Psychometric Society, vol. 87(2), pages 376-402, June.
    13. Oscar J. Cacho & Robyn L. Hean & Russell M. Wise, 2003. "Carbon‐accounting methods and reforestation incentives," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 47(2), pages 153-179, June.
    14. Walter M. Cadette, 1999. "Financing Long-Term Care: Options for Policy," Economics Working Paper Archive wp_283, Levy Economics Institute.
    15. Eggli, Yves & Halfon, Patricia & Chikhi, Mehdi & Bandi, Till, 2006. "Ambulatory healthcare information system: A conceptual framework," Health Policy, Elsevier, vol. 78(1), pages 26-38, August.
    16. M. A. Noor & E.A. Al-Said, 2002. "Finite-Difference Method for a System of Third-Order Boundary-Value Problems," Journal of Optimization Theory and Applications, Springer, vol. 112(3), pages 627-637, March.
    17. Yong He & Zhiyi Tan, 2002. "Ordinal On-Line Scheduling for Maximizing the Minimum Machine Completion Time," Journal of Combinatorial Optimization, Springer, vol. 6(2), pages 199-206, June.
    18. Henderson, James E. & Dunn, Michael A., 2007. "Investigating the Potential of Fee-Based Recreation on Private Lands in the Lower Mississippi River Delta," 2007 Annual Meeting, February 4-7, 2007, Mobile, Alabama 34822, Southern Agricultural Economics Association.
    19. Eike Quilling & Birgit Babitsch & Kevin Dadaczynski & Stefanie Kruse & Maja Kuchler & Heike Köckler & Janna Leimann & Ulla Walter & Christina Plantz, 2020. "Municipal Health Promotion as Part of Urban Health: A Policy Framework for Action," Sustainability, MDPI, vol. 12(16), pages 1-10, August.
    20. Haeringer, Guillaume & Klijn, Flip, 2009. "Constrained school choice," Journal of Economic Theory, Elsevier, vol. 144(5), pages 1921-1947, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:149:y:2021:i:c:s1364032121006298. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.