IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i9p1689-d1226234.html
   My bibliography  Save this article

Advancements and Innovations in Harnessing Microbial Processes for Enhanced Biogas Production from Waste Materials

Author

Listed:
  • Ankita Das

    (Soil and Environment Microbiology Laboratory, Department of Microbiology, Assam University, Silchar 788011, India)

  • Sandeep Das

    (Soil and Environment Microbiology Laboratory, Department of Microbiology, Assam University, Silchar 788011, India)

  • Nandita Das

    (Soil and Environment Microbiology Laboratory, Department of Microbiology, Assam University, Silchar 788011, India)

  • Prisha Pandey

    (Department of Biotechnology, The Assam Royal Global University, Guwahati 791102, India)

  • Birson Ingti

    (Department of Microbiology, The Assam Royal Global University, Guwahati 791102, India)

  • Vladimir Panchenko

    (Department of Theoretical and Applied Mechanics, Russian University of Transport, 127994 Moscow, Russia)

  • Vadim Bolshev

    (Federal State Budgetary Scientific Institution “Federal Scientific Agroengineering Center VIM”, 1st Institutskiy Proezd, 5, 109428 Moscow, Russia)

  • Andrey Kovalev

    (Federal State Budgetary Scientific Institution “Federal Scientific Agroengineering Center VIM”, 1st Institutskiy Proezd, 5, 109428 Moscow, Russia)

  • Piyush Pandey

    (Soil and Environment Microbiology Laboratory, Department of Microbiology, Assam University, Silchar 788011, India)

Abstract

Biogas production from waste materials has emerged as a promising avenue for sustainable energy generation, offering a dual benefit of waste management and renewable energy production. The selection and preparation of waste feedstocks, including agricultural residues, food waste, animal manure, and municipal solid wastes, are important for this process, while the microbial communities are majorly responsible for bioconversions. This review explores the role of complex microbial communities and their functions responsible for the anaerobic digestion of wastes. It covers the crucial physiological processes including hydrolysis, acidogenesis, acetogenesis, and methanogenesis, elucidating the microbial activities and metabolic pathways involved in the prospects of improving the efficiency of biogas production. This article further discusses the influence of recent progress in molecular techniques, including genomics, metagenomics, meta-transcriptomics, and stable isotope probing. These advancements have greatly improved our understanding of microbial communities and their capabilities of biogas production from waste materials. The integration of these techniques with process monitoring and control strategies has been elaborated to offer possibilities for optimizing biogas production and ensuring process stability. Microbial additives, co-digestion of diverse feedstocks, and process optimization through microbial community engineering have been discussed as effective approaches to enhance the efficiency of biogas production. This review also outlines the emerging trends and future prospects in microbial-based biogas production, including the utilization of synthetic biology tools for engineering novel microbial strains and consortia, harnessing microbiomes from extreme environments, and integrating biogas production with other biotechnological processes. While there are several reviews regarding the technical aspects of biogas production, this article stands out by offering up-to-date insights and recommendations for leveraging the potential of microbial communities, and their physiological roles for efficient biogas production. These insights emphasize the pivotal role of microbes in enhancing biogas production, ultimately contributing to the advancement of a sustainable and carbon-neutral future.

Suggested Citation

  • Ankita Das & Sandeep Das & Nandita Das & Prisha Pandey & Birson Ingti & Vladimir Panchenko & Vadim Bolshev & Andrey Kovalev & Piyush Pandey, 2023. "Advancements and Innovations in Harnessing Microbial Processes for Enhanced Biogas Production from Waste Materials," Agriculture, MDPI, vol. 13(9), pages 1-34, August.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:9:p:1689-:d:1226234
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/9/1689/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/9/1689/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. A Aziz, Md Maniruzzaman & Kassim, Khairul Anuar & ElSergany, Moetaz & Anuar, Syed & Jorat, M. Ehsan & Yaacob, H. & Ahsan, Amimul & Imteaz, Monzur A. & Arifuzzaman,, 2020. "Recent advances on palm oil mill effluent (POME) pretreatment and anaerobic reactor for sustainable biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    2. Tabatabaei, Meisam & Aghbashlo, Mortaza & Valijanian, Elena & Kazemi Shariat Panahi, Hamed & Nizami, Abdul-Sattar & Ghanavati, Hossein & Sulaiman, Alawi & Mirmohamadsadeghi, Safoora & Karimi, Keikhosr, 2020. "A comprehensive review on recent biological innovations to improve biogas production, Part 1: Upstream strategies," Renewable Energy, Elsevier, vol. 146(C), pages 1204-1220.
    3. Paul Choudhury, Shinjini & Panda, Sugato & Haq, Izharul & Kalamdhad, Ajay S., 2022. "Microbial pretreatment using Kosakonia oryziphila IH3 to enhance biogas production and hydrocarbon depletion from petroleum refinery sludge," Renewable Energy, Elsevier, vol. 194(C), pages 1192-1203.
    4. Westerholm, Maria & Moestedt, Jan & Schnürer, Anna, 2016. "Biogas production through syntrophic acetate oxidation and deliberate operating strategies for improved digester performance," Applied Energy, Elsevier, vol. 179(C), pages 124-135.
    5. Meneses-Quelal Orlando & Velázquez-Martí Borja, 2020. "Pretreatment of Animal Manure Biomass to Improve Biogas Production: A Review," Energies, MDPI, vol. 13(14), pages 1-28, July.
    6. Xue, Shengrong & Song, Jinghui & Wang, Xiaojiao & Shang, Zezhou & Sheng, Chenjing & Li, Chongyuan & Zhu, Yufan & Liu, Jingyu, 2020. "A systematic comparison of biogas development and related policies between China and Europe and corresponding insights," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    7. Rasit, Nazaitulshila & Idris, Azni & Harun, Razif & Wan Ab Karim Ghani, Wan Azlina, 2015. "Effects of lipid inhibition on biogas production of anaerobic digestion from oily effluents and sludges: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 351-358.
    8. Maria Alexandropoulou & Georgia Antonopoulou & Ioanna Ntaikou & Gerasimos Lyberatos, 2017. "Fungal Pretreatment of Willow Sawdust with Abortiporus biennis for Anaerobic Digestion: Impact of an External Nitrogen Source," Sustainability, MDPI, vol. 9(1), pages 1-14, January.
    9. Thema, M. & Bauer, F. & Sterner, M., 2019. "Power-to-Gas: Electrolysis and methanation status review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 775-787.
    10. Mariana Ferdeș & Mirela Nicoleta Dincă & Georgiana Moiceanu & Bianca Ștefania Zăbavă & Gigel Paraschiv, 2020. "Microorganisms and Enzymes Used in the Biological Pretreatment of the Substrate to Enhance Biogas Production: A Review," Sustainability, MDPI, vol. 12(17), pages 1-26, September.
    11. Pöschl, Martina & Ward, Shane & Owende, Philip, 2010. "Evaluation of energy efficiency of various biogas production and utilization pathways," Applied Energy, Elsevier, vol. 87(11), pages 3305-3321, November.
    12. Jensen, Mads Bjørnkjær & Kofoed, Michael Vedel Wegener & Fischer, Keelan & Voigt, Niels Vinther & Agneessens, Laura Mia & Batstone, Damien John & Ottosen, Lars Ditlev Mørck, 2018. "Venturi-type injection system as a potential H2 mass transfer technology for full-scale in situ biomethanation," Applied Energy, Elsevier, vol. 222(C), pages 840-846.
    13. Meyer-Aurich, Andreas & Schattauer, Alexander & Hellebrand, Hans Jürgen & Klauss, Hilde & Plöchl, Matthias & Berg, Werner, 2012. "Impact of uncertainties on greenhouse gas mitigation potential of biogas production from agricultural resources," Renewable Energy, Elsevier, vol. 37(1), pages 277-284.
    14. Burkhardt, Marko & Busch, Günter, 2013. "Methanation of hydrogen and carbon dioxide," Applied Energy, Elsevier, vol. 111(C), pages 74-79.
    15. Peter J. Turnbaugh & Ruth E. Ley & Michael A. Mahowald & Vincent Magrini & Elaine R. Mardis & Jeffrey I. Gordon, 2006. "An obesity-associated gut microbiome with increased capacity for energy harvest," Nature, Nature, vol. 444(7122), pages 1027-1031, December.
    16. Susanne Theuerl & Johanna Klang & Annette Prochnow, 2019. "Process Disturbances in Agricultural Biogas Production—Causes, Mechanisms and Effects on the Biogas Microbiome: A Review," Energies, MDPI, vol. 12(3), pages 1-20, January.
    17. Mustafa, Ahmed M. & Poulsen, Tjalfe G. & Sheng, Kuichuan, 2016. "Fungal pretreatment of rice straw with Pleurotus ostreatus and Trichoderma reesei to enhance methane production under solid-state anaerobic digestion," Applied Energy, Elsevier, vol. 180(C), pages 661-671.
    18. Jakub Mazurkiewicz, 2022. "Energy and Economic Balance between Manure Stored and Used as a Substrate for Biogas Production," Energies, MDPI, vol. 15(2), pages 1-17, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bekkering, J. & Hengeveld, E.J. & van Gemert, W.J.T. & Broekhuis, A.A., 2015. "Will implementation of green gas into the gas supply be feasible in the future?," Applied Energy, Elsevier, vol. 140(C), pages 409-417.
    2. Stolecka, Katarzyna & Rusin, Andrzej, 2021. "Potential hazards posed by biogas plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    3. Strübing, Dietmar & Moeller, Andreas B. & Mößnang, Bettina & Lebuhn, Michael & Drewes, Jörg E. & Koch, Konrad, 2018. "Anaerobic thermophilic trickle bed reactor as a promising technology for flexible and demand-oriented H2/CO2 biomethanation," Applied Energy, Elsevier, vol. 232(C), pages 543-554.
    4. Ruggero Bellini & Ilaria Bassani & Arianna Vizzarro & Annalisa Abdel Azim & Nicolò Santi Vasile & Candido Fabrizio Pirri & Francesca Verga & Barbara Menin, 2022. "Biological Aspects, Advancements and Techno-Economical Evaluation of Biological Methanation for the Recycling and Valorization of CO 2," Energies, MDPI, vol. 15(11), pages 1-34, June.
    5. Roopnarain, Ashira & Rama, Haripriya & Ndaba, Busiswa & Bello-Akinosho, Maryam & Bamuza-Pemu, Emomotimi & Adeleke, Rasheed, 2021. "Unravelling the anaerobic digestion ‘black box’: Biotechnological approaches for process optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    6. Khan, Muhammad Usman & Lee, Jonathan Tian En & Bashir, Muhammad Aamir & Dissanayake, Pavani Dulanja & Ok, Yong Sik & Tong, Yen Wah & Shariati, Mohammad Ali & Wu, Sarah & Ahring, Birgitte Kiaer, 2021. "Current status of biogas upgrading for direct biomethane use: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    7. Bacenetti, Jacopo & Sala, Cesare & Fusi, Alessandra & Fiala, Marco, 2016. "Agricultural anaerobic digestion plants: What LCA studies pointed out and what can be done to make them more environmentally sustainable," Applied Energy, Elsevier, vol. 179(C), pages 669-686.
    8. Tabatabaei, Meisam & Aghbashlo, Mortaza & Valijanian, Elena & Kazemi Shariat Panahi, Hamed & Nizami, Abdul-Sattar & Ghanavati, Hossein & Sulaiman, Alawi & Mirmohamadsadeghi, Safoora & Karimi, Keikhosr, 2020. "A comprehensive review on recent biological innovations to improve biogas production, Part 1: Upstream strategies," Renewable Energy, Elsevier, vol. 146(C), pages 1204-1220.
    9. Jakub Mazurkiewicz, 2023. "Loss of Energy and Economic Potential of a Biogas Plant Fed with Cow Manure due to Storage Time," Energies, MDPI, vol. 16(18), pages 1-22, September.
    10. Auburger, Sebastian & Jacobs, Anna & Märländer, Bernward & Bahrs, Enno, 2016. "Economic optimization of feedstock mix for energy production with biogas technology in Germany with a special focus on sugar beets – Effects on greenhouse gas emissions and energy balances," Renewable Energy, Elsevier, vol. 89(C), pages 1-11.
    11. Gupte, Ameya Pankaj & Basaglia, Marina & Casella, Sergio & Favaro, Lorenzo, 2022. "Rice waste streams as a promising source of biofuels: feedstocks, biotechnologies and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    12. Li, Yue & Chen, Yinguang & Wu, Jiang, 2019. "Enhancement of methane production in anaerobic digestion process: A review," Applied Energy, Elsevier, vol. 240(C), pages 120-137.
    13. Oluwafunmilayo Abiola Aworanti & Oluseye Omotoso Agbede & Samuel Enahoro Agarry & Ayobami Olu Ajani & Oyetola Ogunkunle & Opeyeolu Timothy Laseinde & S. M. Ashrafur Rahman & Islam Md Rizwanul Fattah, 2023. "Decoding Anaerobic Digestion: A Holistic Analysis of Biomass Waste Technology, Process Kinetics, and Operational Variables," Energies, MDPI, vol. 16(8), pages 1-36, April.
    14. Maghanaki, M. Mohammadi & Ghobadian, B. & Najafi, G. & Galogah, R. Janzadeh, 2013. "Potential of biogas production in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 702-714.
    15. Hamelin, Lorie & Naroznova, Irina & Wenzel, Henrik, 2014. "Environmental consequences of different carbon alternatives for increased manure-based biogas," Applied Energy, Elsevier, vol. 114(C), pages 774-782.
    16. Derick Lima & Gregory Appleby & Li Li, 2023. "A Scoping Review of Options for Increasing Biogas Production from Sewage Sludge: Challenges and Opportunities for Enhancing Energy Self-Sufficiency in Wastewater Treatment Plants," Energies, MDPI, vol. 16(5), pages 1-34, March.
    17. Wu, Di & Li, Lei & Peng, Yun & Yang, Pingjin & Peng, Xuya & Sun, Yongming & Wang, Xiaoming, 2021. "State indicators of anaerobic digestion: A critical review on process monitoring and diagnosis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    18. Susanne Theuerl & Christiane Herrmann & Monika Heiermann & Philipp Grundmann & Niels Landwehr & Ulrich Kreidenweis & Annette Prochnow, 2019. "The Future Agricultural Biogas Plant in Germany: A Vision," Energies, MDPI, vol. 12(3), pages 1-32, January.
    19. Ekwenna, Emeka Boniface & Wang, Yaodong & Roskilly, Anthony, 2023. "Bioenergy production from pretreated rice straw in Nigeria: An analysis of novel three-stage anaerobic digestion for hydrogen and methane co-generation," Applied Energy, Elsevier, vol. 348(C).
    20. Amponsah, Nana Yaw & Troldborg, Mads & Kington, Bethany & Aalders, Inge & Hough, Rupert Lloyd, 2014. "Greenhouse gas emissions from renewable energy sources: A review of lifecycle considerations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 461-475.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:9:p:1689-:d:1226234. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.