IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i10p2421-d1397178.html
   My bibliography  Save this article

Evaluation of the Activity of a Municipal Waste Landfill Site in the Operational and Non-Operational Sectors Based on Landfill Gas Productivity

Author

Listed:
  • Grzegorz Przydatek

    (Faculty of Engineering Sciences, University of Applied Sciences in Nowy Sącz, Zamenhofa 1a, 33-300 Nowy Sącz, Poland)

  • Agnieszka Generowicz

    (Department of Environmental Technologies, Cracow University of Technology, Warszawska 24, 31-155 Krakow, Poland)

  • Włodzimierz Kanownik

    (Faculty of Environmental Engineering and Land Surveying, University of Agriculture in Krakow, Ave. Mickiewicza 24-28, 30-059 Krakow, Poland)

Abstract

This research identifies the productivity of landfill gas actively captured at a municipal waste landfill site with a waste mass exceeding 1 million Mg from sectors in the operational and non-operational phases, considering meteorological conditions. Based on the analysis of landfill gas, including emissions and composition (CH 4 , CO 2 , O 2 , and other gases), the processes occurring demonstrate the impact of the decomposition of deposited waste on the activity of the deposit. With average monthly gas emissions exceeding 960,000 m 3 , the average content of CH 4 (30–63%) and CO 2 (18–42%) and the varied content of O 2 (0.3–9.8%) in individual sectors of the landfill site were significant. The statistically significant relationship between CH 4 , CO 2 , and landfill gas emissions exhibited a noticeable decrease in methane content. Despite the abandonment of waste storage, a high correlation is present between the emission level and methane content (0.59) and carbon dioxide (0.50). In the operational part of the landfill, this relationship is also statistically significant but to a lesser extent; Spearman’s R -value was 0.42 for methane and 0.36 for carbon dioxide. The operational and post-operational phases of the municipal waste landfill demonstrated a noticeable impact from the amount of precipitation, relative humidity, and air temperature, on landfill gas productivity. The generally progressive decline in the activity of the waste deposit, which reflects a decreasing trend in the methane content of approximately 2% annually in the total composition of landfill gas, as well as the share below 50%, indicates the need only to utilise landfill without producing energy.

Suggested Citation

  • Grzegorz Przydatek & Agnieszka Generowicz & Włodzimierz Kanownik, 2024. "Evaluation of the Activity of a Municipal Waste Landfill Site in the Operational and Non-Operational Sectors Based on Landfill Gas Productivity," Energies, MDPI, vol. 17(10), pages 1-16, May.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:10:p:2421-:d:1397178
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/10/2421/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/10/2421/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Józef Ciuła & Iwona Wiewiórska & Marian Banaś & Tadeusz Pająk & Piotr Szewczyk, 2023. "Balance and Energy Use of Biogas in Poland: Prospects and Directions of Development for the Circular Economy," Energies, MDPI, vol. 16(9), pages 1-12, May.
    2. Prince Obinna Njoku & Stuart Piketh & Rachel Makungo & Joshua Nosa Edokpayi, 2023. "Monitoring of Subsurface Emissions and the Influence of Meteorological Factors on Landfill Gas Emissions: A Case Study of a South African Landfill," Sustainability, MDPI, vol. 15(7), pages 1-24, March.
    3. Stolecka, Katarzyna & Rusin, Andrzej, 2021. "Potential hazards posed by biogas plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    4. Krzysztof Gaska & Agnieszka Generowicz & Anna Gronba-Chyła & Józef Ciuła & Iwona Wiewiórska & Paweł Kwaśnicki & Marcin Mala & Krzysztof Chyła, 2023. "Artificial Intelligence Methods for Analysis and Optimization of CHP Cogeneration Units Based on Landfill Biogas as a Progress in Improving Energy Efficiency and Limiting Climate Change," Energies, MDPI, vol. 16(15), pages 1-19, July.
    5. Nathaniel Sawyerr & Cristina Trois & Tilahun Workneh & Vincent Okudoh, 2019. "An Overview of Biogas Production: Fundamentals, Applications and Future Research," International Journal of Energy Economics and Policy, Econjournals, vol. 9(2), pages 105-116.
    6. Józef Ciuła & Sławomir Kowalski & Agnieszka Generowicz & Krzysztof Barbusiński & Zbigniew Matuszak & Krzysztof Gaska, 2023. "Analysis of Energy Generation Efficiency and Reliability of a Cogeneration Unit Powered by Biogas," Energies, MDPI, vol. 16(5), pages 1-16, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Józef Ciuła & Elżbieta Sobiecka & Tomasz Zacłona & Paulina Rydwańska & Aneta Oleksy-Gębczyk & Tomasz P. Olejnik & Sławomir Jurkowski, 2024. "Management of the Municipal Waste Stream: Waste into Energy in the Context of a Circular Economy—Economic and Technological Aspects for a Selected Region in Poland," Sustainability, MDPI, vol. 16(15), pages 1-25, July.
    2. Anna Kochanek & Józef Ciuła & Agnieszka Generowicz & Olena Mitryasova & Aleksandra Jasińska & Sławomir Jurkowski & Paweł Kwaśnicki, 2024. "The Analysis of Geospatial Factors Necessary for the Planning, Design, and Construction of Agricultural Biogas Plants in the Context of Sustainable Development," Energies, MDPI, vol. 17(22), pages 1-23, November.
    3. Katarzyna Ignatowicz & Gabriel Filipczak & Barbara Dybek & Grzegorz Wałowski, 2023. "Biogas Production Depending on the Substrate Used: A Review and Evaluation Study—European Examples," Energies, MDPI, vol. 16(2), pages 1-17, January.
    4. Dawid Czajor & Łukasz Amanowicz, 2024. "Methodology for Modernizing Local Gas-Fired District Heating Systems into a Central District Heating System Using Gas-Fired Cogeneration Engines—A Case Study," Sustainability, MDPI, vol. 16(4), pages 1-30, February.
    5. Tavera-Ruiz, C. & Martí-Herrero, J. & Mendieta, O. & Jaimes-Estévez, J. & Gauthier-Maradei, P. & Azimov, U. & Escalante, H. & Castro, L., 2023. "Current understanding and perspectives on anaerobic digestion in developing countries: Colombia case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    6. Jakub Mazurkiewicz, 2023. "The Impact of Manure Use for Energy Purposes on the Economic Balance of a Dairy Farm," Energies, MDPI, vol. 16(18), pages 1-22, September.
    7. Irina N. Vikhareva & Guliya K. Aminova & Aliya K. Mazitova, 2022. "Resource Cycling: Application of Anaerobic Utilization Methods," Sustainability, MDPI, vol. 14(15), pages 1-16, July.
    8. Jakub Mazurkiewicz, 2023. "Loss of Energy and Economic Potential of a Biogas Plant Fed with Cow Manure due to Storage Time," Energies, MDPI, vol. 16(18), pages 1-22, September.
    9. Joanna Mikusińska & Monika Kuźnia & Klaudia Czerwińska & Małgorzata Wilk, 2023. "Hydrothermal Carbonization of Digestate Produced in the Biogas Production Process," Energies, MDPI, vol. 16(14), pages 1-18, July.
    10. Kasinath, Archana & Fudala-Ksiazek, Sylwia & Szopinska, Malgorzata & Bylinski, Hubert & Artichowicz, Wojciech & Remiszewska-Skwarek, Anna & Luczkiewicz, Aneta, 2021. "Biomass in biogas production: Pretreatment and codigestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    11. Kamalimeera, N. & Kirubakaran, V., 2021. "Prospects and restraints in biogas fed SOFC for rural energization: A critical review in indian perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    12. Wu, Di & Li, Lei & Peng, Yun & Yang, Pingjin & Peng, Xuya & Sun, Yongming & Wang, Xiaoming, 2021. "State indicators of anaerobic digestion: A critical review on process monitoring and diagnosis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    13. Mateusz Nowak & Wiktor Bojarski & Wojciech Czekała, 2024. "Economic and Energy Efficiency Analysis of the Biogas Plant Digestate Management Methods," Energies, MDPI, vol. 17(12), pages 1-19, June.
    14. Krzysztof Pilarski & Agnieszka A. Pilarska & Alicja Kolasa-Więcek & Dariusz Suszanowicz, 2023. "An Agricultural Biogas Plant as a Thermodynamic System: A Study of Efficiency in the Transformation from Primary to Secondary Energy," Energies, MDPI, vol. 16(21), pages 1-15, November.
    15. Akhilesh Kumar Singh & Priti Pal & Saurabh Singh Rathore & Uttam Kumar Sahoo & Prakash Kumar Sarangi & Piotr Prus & Paweł Dziekański, 2023. "Sustainable Utilization of Biowaste Resources for Biogas Production to Meet Rural Bioenergy Requirements," Energies, MDPI, vol. 16(14), pages 1-22, July.
    16. Mateusz Klejnowski & Katarzyna Stolecka-Antczak, 2024. "The Influence of Hydrogen Concentration on the Hazards Associated with the Use of Coke Oven Gas," Energies, MDPI, vol. 17(19), pages 1-16, September.
    17. Józef Ciuła & Agnieszka Generowicz & Anna Gronba-Chyła & Iwona Wiewiórska & Paweł Kwaśnicki & Mariusz Cygnar, 2024. "Analysis of the Efficiency of Landfill Gas Treatment for Power Generation in a Cogeneration System in Terms of the European Green Deal," Sustainability, MDPI, vol. 16(4), pages 1-16, February.
    18. Marcin Zieliński & Joanna Kazimierowicz & Marcin Dębowski, 2022. "Advantages and Limitations of Anaerobic Wastewater Treatment—Technological Basics, Development Directions, and Technological Innovations," Energies, MDPI, vol. 16(1), pages 1-39, December.
    19. Marie-Noël Mansour & Thomas Lendormi & Nicolas Louka & Richard G. Maroun & Zeina Hobaika & Jean-Louis Lanoisellé, 2023. "Anaerobic Digestion of Poultry Droppings in Semi-Continuous Mode and Effect of Their Co-Digestion with Physico-Chemical Sludge on Methane Yield," Sustainability, MDPI, vol. 15(7), pages 1-19, March.
    20. Andrzej Rusin & Katarzyna Stolecka-Antczak, 2023. "Assessment of the Safety of Transport of the Natural Gas–Ammonia Mixture," Energies, MDPI, vol. 16(5), pages 1-20, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:10:p:2421-:d:1397178. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.