IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v134y2020ics1364032120304548.html
   My bibliography  Save this article

A derived novel mesoporous catalyst for biodiesel synthesis from Hura creptian-Sesamum indicum-Blighia sapida-Ayo/Ncho oil blend: A case of Brachyura, Achatina fulica and Littorina littorea shells mix

Author

Listed:
  • Adepoju, T.F.
  • Ekanem, U.
  • Ibeh, M.A.
  • Udoetuk, E.N.

Abstract

In this study, the emphasis was laid on the synthesis of a novel heterogeneous base catalyst from the mixture of Brachyura, Achatina fulica and Littorina littorea shells powders. Methanolysis of the synthesized catalyst was applied to the esterified oil obtained from the Hura creptian-Sesamum indicum-Blighia sapida-Ayo/Ncho oil blend via API gravity ratio. Each calcined catalyst A, B, C, and D (derived) was characterized by EDX-ray and BET analysis, but D was further characterized by SEM and FTIR. The strength of the basicity of the D catalyst was tested by the catalyst reusability test. The biodiesel was compared with biodiesel standard to ascertain its suitability in the C.I. engine.

Suggested Citation

  • Adepoju, T.F. & Ekanem, U. & Ibeh, M.A. & Udoetuk, E.N., 2020. "A derived novel mesoporous catalyst for biodiesel synthesis from Hura creptian-Sesamum indicum-Blighia sapida-Ayo/Ncho oil blend: A case of Brachyura, Achatina fulica and Littorina littorea shells mix," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
  • Handle: RePEc:eee:rensus:v:134:y:2020:i:c:s1364032120304548
    DOI: 10.1016/j.rser.2020.110163
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032120304548
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2020.110163?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qiu, Fengxian & Li, Yihuai & Yang, Dongya & Li, Xiaohua & Sun, Ping, 2011. "Biodiesel production from mixed soybean oil and rapeseed oil," Applied Energy, Elsevier, vol. 88(6), pages 2050-2055, June.
    2. Habibullah, M. & Masjuki, H.H. & Kalam, M.A. & Rahman, S.M. Ashrafur & Mofijur, M. & Mobarak, H.M. & Ashraful, A.M., 2015. "Potential of biodiesel as a renewable energy source in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 819-834.
    3. Balajii, Muthusamy & Niju, Subramaniapillai, 2020. "Banana peduncle – A green and renewable heterogeneous base catalyst for biodiesel production from Ceiba pentandra oil," Renewable Energy, Elsevier, vol. 146(C), pages 2255-2269.
    4. Jack P. C. Kleijnen, 2015. "Response Surface Methodology," International Series in Operations Research & Management Science, in: Michael C Fu (ed.), Handbook of Simulation Optimization, edition 127, chapter 0, pages 81-104, Springer.
    5. Adepoju T.F. & Okunola A. A., 2015. "Modeling and Optimization of Transesterification of Beniseed Oil to Beniseed Methylester: A Case of Artificial Neural Network versus Response Surface Methodology," International Journal of Chemical and Process Engineering Research, Conscientia Beam, vol. 2(3), pages 30-43.
    6. Adepoju T. F & Okunola A. A, 2015. "Modeling and Optimization of Transesterification of Beniseed Oil to Beniseed Methylester: A Case of Artificial Neural Network versus Response Surface Methodology," International Journal of Chemical and Process Engineering Research, Conscientia Beam, vol. 2(3), pages 30-43.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Teo, Siow Hwa & Islam, Aminul & Mansir, Nasar & Shamsuddin, Mohd Razali & Joseph, Collin G. & Goto, Motonobu & Taufiq-Yap, Yun Hin, 2022. "Sustainable biofuel production approach: Critical methanol green transesterification by efficient and stable heterogeneous catalyst," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adepoju, T.F. & Ibeh, M.A. & Udoetuk, E.N. & Babatunde, E.O., 2021. "Quaternary blend of Carica papaya - Citrus sinesis - Hibiscus sabdariffa - Waste used oil for biodiesel synthesis using CaO-based catalyst derived from binary mix of Lattorina littorea and Mactra cora," Renewable Energy, Elsevier, vol. 171(C), pages 22-33.
    2. Yusuff, Adeyinka S. & Bhonsle, Aman K. & Bangwal, Dinesh P. & Atray, Neeraj, 2021. "Development of a barium-modified zeolite catalyst for biodiesel production from waste frying oil: Process optimization by design of experiment," Renewable Energy, Elsevier, vol. 177(C), pages 1253-1264.
    3. Mat Yasin, Mohd Hafizil & Mamat, Rizalman & Najafi, G. & Ali, Obed Majeed & Yusop, Ahmad Fitri & Ali, Mohd Hafiz, 2017. "Potentials of palm oil as new feedstock oil for a global alternative fuel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1034-1049.
    4. Anietie O. Etim & Eriola Betiku & Sheriff O. Ajala & Peter J. Olaniyi & Tunde V. Ojumu, 2018. "Potential of Ripe Plantain Fruit Peels as an Ecofriendly Catalyst for Biodiesel Synthesis: Optimization by Artificial Neural Network Integrated with Genetic Algorithm," Sustainability, MDPI, vol. 10(3), pages 1-15, March.
    5. Qu, Tongxin & Niu, Shengli & Gong, Zhiqiang & Han, Kuihua & Wang, Yongzheng & Lu, Chunmei, 2020. "Wollastonite decorated with calcium oxide as heterogeneous transesterification catalyst for biodiesel production: Optimized by response surface methodology," Renewable Energy, Elsevier, vol. 159(C), pages 873-884.
    6. Yesilyurt, Murat Kadir & Cesur, Cüneyt & Aslan, Volkan & Yilbasi, Zeki, 2020. "The production of biodiesel from safflower (Carthamus tinctorius L.) oil as a potential feedstock and its usage in compression ignition engine: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    7. Shen-Tsu Wang, 2016. "Integrating grey sequencing with the genetic algorithm--immune algorithm to optimise touch panel cover glass polishing process parameter design," International Journal of Production Research, Taylor & Francis Journals, vol. 54(16), pages 4882-4893, August.
    8. Yek, Peter Nai Yuh & Cheng, Yoke Wang & Liew, Rock Keey & Wan Mahari, Wan Adibah & Ong, Hwai Chyuan & Chen, Wei-Hsin & Peng, Wanxi & Park, Young-Kwon & Sonne, Christian & Kong, Sieng Huat & Tabatabaei, 2021. "Progress in the torrefaction technology for upgrading oil palm wastes to energy-dense biochar: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    9. Qin, Caiyan & Kim, Joong Bae & Lee, Bong Jae, 2019. "Performance analysis of a direct-absorption parabolic-trough solar collector using plasmonic nanofluids," Renewable Energy, Elsevier, vol. 143(C), pages 24-33.
    10. Daimary, Niran & Boruah, Pankaj & Eldiehy, Khalifa S.H. & Pegu, Tapan & Bardhan, Pritam & Bora, Utpal & Mandal, Manabendra & Deka, Dhanapati, 2022. "Musa acuminata peel: A bioresource for bio-oil and by-product utilization as a sustainable source of renewable green catalyst for biodiesel production," Renewable Energy, Elsevier, vol. 187(C), pages 450-462.
    11. Olatundun, Esther Adedayo & Borokini, Omowumi Oluwatumininu & Betiku, Eriola, 2020. "Cocoa pod husk-plantain peel blend as a novel green heterogeneous catalyst for renewable and sustainable honne oil biodiesel synthesis: A case of biowastes-to-wealth," Renewable Energy, Elsevier, vol. 166(C), pages 163-175.
    12. Kaushik, Lav Kumar & Muthukumar, P., 2020. "Thermal and economic performance assessments of waste cooking oil /kerosene blend operated pressure cook-stove with porous radiant burner," Energy, Elsevier, vol. 206(C).
    13. Yaman, Hayri & Yesilyurt, Murat Kadir & Uslu, Samet, 2022. "Simultaneous optimization of multiple engine parameters of a 1-heptanol / gasoline fuel blends operated a port-fuel injection spark-ignition engine using response surface methodology approach," Energy, Elsevier, vol. 238(PC).
    14. Visva Bharati Barua & Mariya Munir, 2021. "A Review on Synchronous Microalgal Lipid Enhancement and Wastewater Treatment," Energies, MDPI, vol. 14(22), pages 1-20, November.
    15. Ramos, Ana & Monteiro, Eliseu & Rouboa, Abel, 2019. "Numerical approaches and comprehensive models for gasification process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 188-206.
    16. D. M. D. Rasika & Janak K. Vidanarachchi & Selma F. Luiz & Denise Rosane Perdomo Azeredo & Adriano G. Cruz & Chaminda Senaka Ranadheera, 2021. "Probiotic Delivery through Non-Dairy Plant-Based Food Matrices," Agriculture, MDPI, vol. 11(7), pages 1-23, June.
    17. M'Arimi, M.M. & Mecha, C.A. & Kiprop, A.K. & Ramkat, R., 2020. "Recent trends in applications of advanced oxidation processes (AOPs) in bioenergy production: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    18. Muhammad, Gul & Potchamyou Ngatcha, Ange Douglas & Lv, Yongkun & Xiong, Wenlong & El-Badry, Yaser A. & Asmatulu, Eylem & Xu, Jingliang & Alam, Md Asraful, 2022. "Enhanced biodiesel production from wet microalgae biomass optimized via response surface methodology and artificial neural network," Renewable Energy, Elsevier, vol. 184(C), pages 753-764.
    19. Renzi, Massimiliano & Bietresato, Marco & Mazzetto, Fabrizio, 2016. "An experimental evaluation of the performance of a SI internal combustion engine for agricultural purposes fuelled with different bioethanol blends," Energy, Elsevier, vol. 115(P1), pages 1069-1080.
    20. Wang, Yi-Tong & Fang, Zhen & Yang, Xing-Xia, 2017. "Biodiesel production from high acid value oils with a highly active and stable bifunctional magnetic acid," Applied Energy, Elsevier, vol. 204(C), pages 702-714.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:134:y:2020:i:c:s1364032120304548. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.