IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v221y2024ics0960148123017081.html
   My bibliography  Save this article

Characteristics of ground surface heat flux for alpine vegetation in freeze-thaw cycles in the three river source region

Author

Listed:
  • Luo, Siqiong
  • Wang, Jingyuan
  • Tan, Xiaoqing
  • Meng, Xianhong
  • Shang, Lunyu
  • Li, Hongmei
  • Zhou, Bingrong
  • Chen, Qi

Abstract

Ground surface heat flux (G0) is a key component of surface energy flux and serves as a reliable parameter for assessing shallow geothermal energy. Using the observations from four sites and a novel method, we investigated the daily, monthly, and diurnal characteristics of G0 across various types of land cover in the Three River Source Region. The contribution of soil heat flux at 5 cm or 7.5 cm (Gsoil) to G0 was found to be only between 1/2 and 2/3, with the remaining portion being attributed to changes in heat storage of soil and liquid water (Δssoil), heat storage of soil ice (Δsice) and latent heat of ice phase change (ΔsLH). The characteristics of G0 exhibited significant variations in response to different land-covered vegetation during daily, monthly, and diurnal cycles, as well as two freeze-thaw stages. The alpine marsh-covered soil had the largest annual amplitude in G0 on both daily and monthly averages but showed the smallest diurnal amplitude in G0. In the frozen stage (FS), G0 played a significant role as a supplement to net radiation (Rn) in TRSR, particularly in the alpine marsh region where it accounted for approximately −22 % to −80 % of Rn from November to February.

Suggested Citation

  • Luo, Siqiong & Wang, Jingyuan & Tan, Xiaoqing & Meng, Xianhong & Shang, Lunyu & Li, Hongmei & Zhou, Bingrong & Chen, Qi, 2024. "Characteristics of ground surface heat flux for alpine vegetation in freeze-thaw cycles in the three river source region," Renewable Energy, Elsevier, vol. 221(C).
  • Handle: RePEc:eee:renene:v:221:y:2024:i:c:s0960148123017081
    DOI: 10.1016/j.renene.2023.119793
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123017081
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119793?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. D. A. Walker & G. J. Jia & H. E. Epstein & M. K. Raynolds & F. S. Chapin III & C. Copass & L. D. Hinzman & J. A. Knudson & H. A. Maier & G. J. Michaelson & F. Nelson & C. L. Ping & V. E. Romanovsky & , 2003. "Vegetation‐soil‐thaw‐depth relationships along a low‐arctic bioclimate gradient, Alaska: synthesis of information from the ATLAS studies," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 14(2), pages 103-123, April.
    2. Ciriaco, Anthony E. & Zarrouk, Sadiq J. & Zakeri, Golbon, 2020. "Geothermal resource and reserve assessment methodology: Overview, analysis and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    3. Yang, H. & Cui, P. & Fang, Z., 2010. "Vertical-borehole ground-coupled heat pumps: A review of models and systems," Applied Energy, Elsevier, vol. 87(1), pages 16-27, January.
    4. Yang, Wei & Zhou, Jin & Xu, Wei & Zhang, Guoqiang, 2010. "Current status of ground-source heat pumps in China," Energy Policy, Elsevier, vol. 38(1), pages 323-332, January.
    5. Bryś, Krystyna & Bryś, Tadeusz & Sayegh, Marderos Ara & Ojrzyńska, Hanna, 2020. "Characteristics of heat fluxes in subsurface shallow depth soil layer as a renewable thermal source for ground coupled heat pumps," Renewable Energy, Elsevier, vol. 146(C), pages 1846-1866.
    6. Bayer, Peter & Saner, Dominik & Bolay, Stephan & Rybach, Ladislaus & Blum, Philipp, 2012. "Greenhouse gas emission savings of ground source heat pump systems in Europe: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1256-1267.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ioan Sarbu & Calin Sebarchievici, 2016. "Performance Evaluation of Radiator and Radiant Floor Heating Systems for an Office Room Connected to a Ground-Coupled Heat Pump," Energies, MDPI, vol. 9(4), pages 1-19, March.
    2. Zhang, Changxing & Guo, Zhanjun & Liu, Yufeng & Cong, Xiaochun & Peng, Donggen, 2014. "A review on thermal response test of ground-coupled heat pump systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 851-867.
    3. Soni, Suresh Kumar & Pandey, Mukesh & Bartaria, Vishvendra Nath, 2016. "Hybrid ground coupled heat exchanger systems for space heating/cooling applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 724-738.
    4. Cui, Yuanlong & Zhu, Jie & Twaha, Ssennoga & Riffat, Saffa, 2018. "A comprehensive review on 2D and 3D models of vertical ground heat exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 84-114.
    5. Gao, Jiajia & Li, Anbang & Xu, Xinhua & Gang, Wenjie & Yan, Tian, 2018. "Ground heat exchangers: Applications, technology integration and potentials for zero energy buildings," Renewable Energy, Elsevier, vol. 128(PA), pages 337-349.
    6. Luo, Jin & Zhang, Qi & Liang, Changming & Wang, Haiqi & Ma, Xinning, 2023. "An overview of the recent development of the Ground Source Heat Pump (GSHP) system in China," Renewable Energy, Elsevier, vol. 210(C), pages 269-279.
    7. Retkowski, Waldemar & Thöming, Jorg, 2014. "Thermoeconomic optimization of vertical ground-source heat pump systems through nonlinear integer programming," Applied Energy, Elsevier, vol. 114(C), pages 492-503.
    8. Qi, Zishu & Gao, Qing & Liu, Yan & Yan, Y.Y. & Spitler, Jeffrey D., 2014. "Status and development of hybrid energy systems from hybrid ground source heat pump in China and other countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 37-51.
    9. García-Gil, Alejandro & Goetzl, Gregor & Kłonowski, Maciej R. & Borovic, Staša & Boon, David P. & Abesser, Corinna & Janza, Mitja & Herms, Ignasi & Petitclerc, Estelle & Erlström, Mikael & Holecek, Ja, 2020. "Governance of shallow geothermal energy resources," Energy Policy, Elsevier, vol. 138(C).
    10. Francesco, Tinti & Annamaria, Pangallo & Martina, Berneschi & Dario, Tosoni & Dušan, Rajver & Simona, Pestotnik & Dalibor, Jovanović & Tomislav, Rudinica & Slavisa, Jelisić & Branko, Zlokapa & Attilio, 2016. "How to boost shallow geothermal energy exploitation in the adriatic area: the LEGEND project experience," Energy Policy, Elsevier, vol. 92(C), pages 190-204.
    11. Sebarchievici, Calin & Sarbu, Ioan, 2015. "Performance of an experimental ground-coupled heat pump system for heating, cooling and domestic hot-water operation," Renewable Energy, Elsevier, vol. 76(C), pages 148-159.
    12. Zhang, Bo & Gu, Kai & Shi, Bin & Liu, Chun & Bayer, Peter & Wei, Guangqing & Gong, Xülong & Yang, Lei, 2020. "Actively heated fiber optics based thermal response test: A field demonstration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    13. Zhai, X.Q. & Qu, M. & Yu, X. & Yang, Y. & Wang, R.Z., 2011. "A review for the applications and integrated approaches of ground-coupled heat pump systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3133-3140, August.
    14. Sorranat Ratchawang & Srilert Chotpantarat & Sasimook Chokchai & Isao Takashima & Youhei Uchida & Punya Charusiri, 2022. "A Review of Ground Source Heat Pump Application for Space Cooling in Southeast Asia," Energies, MDPI, vol. 15(14), pages 1-18, July.
    15. Bayer, Peter & Attard, Guillaume & Blum, Philipp & Menberg, Kathrin, 2019. "The geothermal potential of cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 106(C), pages 17-30.
    16. Wahiba Yaïci & Andres Annuk & Evgueniy Entchev & Michela Longo & Janar Kalder, 2021. "Organic Rankine Cycle-Ground Source Heat Pump with Seasonal Energy Storage Based Micro-Cogeneration System in Cold Climates: The Case for Canada," Energies, MDPI, vol. 14(18), pages 1-21, September.
    17. Wilke, Sascha & Menberg, Kathrin & Steger, Hagen & Blum, Philipp, 2020. "Advanced thermal response tests: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    18. Hähnlein, Stefanie & Bayer, Peter & Ferguson, Grant & Blum, Philipp, 2013. "Sustainability and policy for the thermal use of shallow geothermal energy," Energy Policy, Elsevier, vol. 59(C), pages 914-925.
    19. Shah, Sheikh Khaleduzzaman & Aye, Lu & Rismanchi, Behzad, 2018. "Seasonal thermal energy storage system for cold climate zones: A review of recent developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 38-49.
    20. Wu, Wei & Wang, Baolong & You, Tian & Shi, Wenxing & Li, Xianting, 2013. "A potential solution for thermal imbalance of ground source heat pump systems in cold regions: Ground source absorption heat pump," Renewable Energy, Elsevier, vol. 59(C), pages 39-48.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:221:y:2024:i:c:s0960148123017081. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.