IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v16y2012i3p1636-1656.html
   My bibliography  Save this article

Computing global and diffuse solar hourly irradiation on clear sky. Review and testing of 54 models

Author

Listed:
  • Badescu, Viorel
  • Gueymard, Christian A.
  • Cheval, Sorin
  • Oprea, Cristian
  • Baciu, Madalina
  • Dumitrescu, Alexandru
  • Iacobescu, Flavius
  • Milos, Ioan
  • Rada, Costel

Abstract

Fifty-four broad band models for computation of global and diffuse irradiance on horizontal surface are shortly presented and tested. The input data for these models consist of surface meteorological data, atmospheric column integrated data and data derived from satellite measurements. The testing procedure is performed for two meteorological stations in Romania (South-Eastern Europe). The testing procedure consists of forty-two stages intended to provide information about the sensitivity of the models to various sets of input data. There is no model to be ranked “the best” for all sets of input data. Very simple models as well as more complex models may belong to the category of “good models”. The best models for solar global radiation computation are, on equal-footing, ESRA3, Ineichen, METSTAT and REST2 (version 81). The second best models are, on equal-footing, Bird, CEM and Paulescu & Schlett. The best models for solar diffuse radiation computation are, on equal-footing, ASHRAE2005 and King. The second best model is MAC model. The best models for computation of both global and diffuse radiation are, on equal-footing, ASHRAE 1972, Biga, Ineichen and REST2 (version 81). The second best is Paulescu & Schlett model.

Suggested Citation

  • Badescu, Viorel & Gueymard, Christian A. & Cheval, Sorin & Oprea, Cristian & Baciu, Madalina & Dumitrescu, Alexandru & Iacobescu, Flavius & Milos, Ioan & Rada, Costel, 2012. "Computing global and diffuse solar hourly irradiation on clear sky. Review and testing of 54 models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1636-1656.
  • Handle: RePEc:eee:rensus:v:16:y:2012:i:3:p:1636-1656
    DOI: 10.1016/j.rser.2011.12.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032111006022
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2011.12.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Younes, S. & Muneer, T., 2007. "Clear-sky classification procedures and models using a world-wide data-base," Applied Energy, Elsevier, vol. 84(6), pages 623-645, June.
    2. Janjai, S. & Sricharoen, K. & Pattarapanitchai, S., 2011. "Semi-empirical models for the estimation of clear sky solar global and direct normal irradiances in the tropics," Applied Energy, Elsevier, vol. 88(12), pages 4749-4755.
    3. Khalil, A. & Alnajjar, A., 1995. "Experimental and theoretical investigation of global and diffuse solar radiation in the United Arab Emirates," Renewable Energy, Elsevier, vol. 6(5), pages 537-543.
    4. Bashahu, M. & Laplaze, D., 1994. "An atmospheric model for computing solar radiation," Renewable Energy, Elsevier, vol. 4(4), pages 455-458.
    5. Nijegorodov, N. & Adedoyin, J.A. & Devan, K.R.S., 1997. "A new analytical-empirical model for the instantaneous diffuse radiation and experimental investigation of its validity," Renewable Energy, Elsevier, vol. 11(3), pages 341-350.
    6. Toğrul, Inci Turk & Toğrul, Hasan & Evin, Duygu, 2000. "Estimation of global solar radiation under clear sky radiation in Turkey," Renewable Energy, Elsevier, vol. 21(2), pages 271-287.
    7. Nijegorodov, N. & Luhanga, P.V.C., 1996. "Air mass: Analytical and empirical treatment; an improved formula for air mass," Renewable Energy, Elsevier, vol. 7(1), pages 57-65.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antonanzas-Torres, F. & Urraca, R. & Polo, J. & Perpiñán-Lamigueiro, O. & Escobar, R., 2019. "Clear sky solar irradiance models: A review of seventy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 374-387.
    2. Sun, Xixi & Bright, Jamie M. & Gueymard, Christian A. & Bai, Xinyu & Acord, Brendan & Wang, Peng, 2021. "Worldwide performance assessment of 95 direct and diffuse clear-sky irradiance models using principal component analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    3. Nijegorodov, N.I. & Devan, K.R.S. & Simao, H. & Mabbs, R., 2003. "Comprehensive study of solar conditions in Mozambique: the effect of trade winds on solar components," Renewable Energy, Elsevier, vol. 28(12), pages 1965-1983.
    4. Sun, Xixi & Bright, Jamie M. & Gueymard, Christian A. & Acord, Brendan & Wang, Peng & Engerer, Nicholas A., 2019. "Worldwide performance assessment of 75 global clear-sky irradiance models using Principal Component Analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 550-570.
    5. Nijegorodov, N. & Luhanga, P.V.C., 1998. "A new model to predict direct normal instantaneous solar radiation, based on laws of spectroscopy, kinetic theory and thermodynamics," Renewable Energy, Elsevier, vol. 13(4), pages 523-530.
    6. Mokri, Alaeddine & Aal Ali, Mona & Emziane, Mahieddine, 2013. "Solar energy in the United Arab Emirates: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 340-375.
    7. Benkaciali, Saïd & Haddadi, Mourad & Khellaf, Abdellah, 2018. "Evaluation of direct solar irradiance from 18 broadband parametric models: Case of Algeria," Renewable Energy, Elsevier, vol. 125(C), pages 694-711.
    8. Bright, Jamie M. & Sun, Xixi & Gueymard, Christian A. & Acord, Brendan & Wang, Peng & Engerer, Nicholas A., 2020. "Bright-Sun: A globally applicable 1-min irradiance clear-sky detection model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    9. Nijegorodov, N. & Adedoyin, J.A. & Devan, K.R.S., 1997. "A new analytical-empirical model for the instantaneous diffuse radiation and experimental investigation of its validity," Renewable Energy, Elsevier, vol. 11(3), pages 341-350.
    10. Almorox, Javier & Voyant, Cyril & Bailek, Nadjem & Kuriqi, Alban & Arnaldo, J.A., 2021. "Total solar irradiance's effect on the performance of empirical models for estimating global solar radiation: An empirical-based review," Energy, Elsevier, vol. 236(C).
    11. Akarslan, Emre & Hocaoglu, Fatih Onur & Edizkan, Rifat, 2018. "Novel short term solar irradiance forecasting models," Renewable Energy, Elsevier, vol. 123(C), pages 58-66.
    12. Mateos, D. & Antón, M. & Valenzuela, A. & Cazorla, A. & Olmo, F.J. & Alados-Arboledas, L., 2014. "Efficiency of clouds on shortwave radiation using experimental data," Applied Energy, Elsevier, vol. 113(C), pages 1216-1219.
    13. Wang, Lunche & Gong, Wei & Li, Chen & Lin, Aiwen & Hu, Bo & Ma, Yingying, 2013. "Measurement and estimation of photosynthetically active radiation from 1961 to 2011 in Central China," Applied Energy, Elsevier, vol. 111(C), pages 1010-1017.
    14. Pan, Tao & Wu, Shaohong & Dai, Erfu & Liu, Yujie, 2013. "Estimating the daily global solar radiation spatial distribution from diurnal temperature ranges over the Tibetan Plateau in China," Applied Energy, Elsevier, vol. 107(C), pages 384-393.
    15. Li, Danny H.W. & Chau, T.C. & Wan, Kevin K.W., 2014. "A review of the CIE general sky classification approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 563-574.
    16. Forero, N.L. & Caicedo, L.M. & Gordillo, G., 2007. "Correlation of global solar radiation values estimated and measured on an inclined surface for clear days in Bogotá," Renewable Energy, Elsevier, vol. 32(15), pages 2590-2602.
    17. Teke, Ahmet & Yıldırım, H. Başak & Çelik, Özgür, 2015. "Evaluation and performance comparison of different models for the estimation of solar radiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1097-1107.
    18. Vamvakas, Ioannis & Salamalikis, Vasileios & Benitez, Daniel & Al-Salaymeh, Ahmed & Bouaichaoui, Sofiane & Yassaa, Noureddine & Guizani, AmenAllah & Kazantzidis, Andreas, 2020. "Estimation of global horizontal irradiance using satellite-derived data across Middle East-North Africa: The role of aerosol optical properties and site-adaptation methodologies," Renewable Energy, Elsevier, vol. 157(C), pages 312-331.
    19. Gulin, Marko & Vašak, Mario & Perić, Nedjeljko, 2013. "Dynamical optimal positioning of a photovoltaic panel in all weather conditions," Applied Energy, Elsevier, vol. 108(C), pages 429-438.
    20. Zhu, Tingting & Wei, Haikun & Zhao, Xin & Zhang, Chi & Zhang, Kanjian, 2017. "Clear-sky model for wavelet forecast of direct normal irradiance," Renewable Energy, Elsevier, vol. 104(C), pages 1-8.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:16:y:2012:i:3:p:1636-1656. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.