IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v101y2017icp347-355.html
   My bibliography  Save this article

Identification of clear days from solar irradiance observations using a new method based on the wavelet transform

Author

Listed:
  • Djafer, D.
  • Irbah, A.
  • Zaiani, M.

Abstract

A new method using the wavelet transform properties is developed to determine clear days of solar irradiance. These days are needed to model the solar radiation and to compare the existing empirical models. We use this method to process four years of global solar irradiation data collected at the Research Unit of Applied Renewable Energies at Ghardaïa city in Algeria. We also determine clear days from this data set using a standard method based on the clearness index criteria. The results show that the two methods give different numbers of clear days. The effect of this difference is analyzed by computing the Global Solar Radiation (GSR) with the Iqbal C model but also by the estimation of turbidity parameters using for that a innovative approach. We find that some significant differences are observed in the GSR modeling leading to bad estimation of turbidity parameters. We conclude that using our method is therefore more efficient since it is not dependent of the site and observations.

Suggested Citation

  • Djafer, D. & Irbah, A. & Zaiani, M., 2017. "Identification of clear days from solar irradiance observations using a new method based on the wavelet transform," Renewable Energy, Elsevier, vol. 101(C), pages 347-355.
  • Handle: RePEc:eee:renene:v:101:y:2017:i:c:p:347-355
    DOI: 10.1016/j.renene.2016.08.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014811630739X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.08.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cañada, J. & Pinazo, J.M. & Bosca, J.V., 1993. "Determination of Angstrom's turbidity coefficient at Valencia," Renewable Energy, Elsevier, vol. 3(6), pages 621-626.
    2. Kumar, Ravinder & Umanand, L., 2005. "Estimation of global radiation using clearness index model for sizing photovoltaic system," Renewable Energy, Elsevier, vol. 30(15), pages 2221-2233.
    3. Mellit, A. & Kalogirou, S.A. & Shaari, S. & Salhi, H. & Hadj Arab, A., 2008. "Methodology for predicting sequences of mean monthly clearness index and daily solar radiation data in remote areas: Application for sizing a stand-alone PV system," Renewable Energy, Elsevier, vol. 33(7), pages 1570-1590.
    4. Peled, A. & Appelbaum, J., 2013. "Evaluation of solar radiation properties by statistical tools and wavelet analysis," Renewable Energy, Elsevier, vol. 59(C), pages 30-38.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gueymard, Christian A. & Bright, Jamie M. & Lingfors, David & Habte, Aron & Sengupta, Manajit, 2019. "A posteriori clear-sky identification methods in solar irradiance time series: Review and preliminary validation using sky imagers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 412-427.
    2. Hartmann, Bálint, 2020. "Comparing various solar irradiance categorization methods – A critique on robustness," Renewable Energy, Elsevier, vol. 154(C), pages 661-671.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ayodele, T.R. & Ogunjuyigbe, A.S.O., 2015. "Prediction of monthly average global solar radiation based on statistical distribution of clearness index," Energy, Elsevier, vol. 90(P2), pages 1733-1742.
    2. Kaplani, E. & Kaplanis, S. & Mondal, S., 2018. "A spatiotemporal universal model for the prediction of the global solar radiation based on Fourier series and the site altitude," Renewable Energy, Elsevier, vol. 126(C), pages 933-942.
    3. Mellit, Adel & Kalogirou, Soteris A. & Drif, Mahmoud, 2010. "Application of neural networks and genetic algorithms for sizing of photovoltaic systems," Renewable Energy, Elsevier, vol. 35(12), pages 2881-2893.
    4. Roumpakias, Elias & Zogou, Olympia & Stamatelos, Anastassios, 2015. "Correlation of actual efficiency of photovoltaic panels with air mass," Renewable Energy, Elsevier, vol. 74(C), pages 70-77.
    5. Makade, Rahul G. & Chakrabarti, Siddharth & Jamil, Basharat & Sakhale, C.N., 2020. "Estimation of global solar radiation for the tropical wet climatic region of India: A theory of experimentation approach," Renewable Energy, Elsevier, vol. 146(C), pages 2044-2059.
    6. Harshavardhan Palahalli & Paolo Maffezzoni & Giambattista Gruosso, 2021. "Gaussian Copula Methodology to Model Photovoltaic Generation Uncertainty Correlation in Power Distribution Networks," Energies, MDPI, vol. 14(9), pages 1-16, April.
    7. Anjorin O.F. & Utah E.U & Likita M.S, 2014. "Estimation of Hourly Photo synthetically- Active Radiation (PAR) From Hourly Global Solar Radiation (GSR) In Jos, Nigeria," Asian Review of Environmental and Earth Sciences, Asian Online Journal Publishing Group, vol. 1(2), pages 43-50.
    8. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    9. Gairaa, Kacem & Voyant, Cyril & Notton, Gilles & Benkaciali, Saïd & Guermoui, Mawloud, 2022. "Contribution of ordinal variables to short-term global solar irradiation forecasting for sites with low variabilities," Renewable Energy, Elsevier, vol. 183(C), pages 890-902.
    10. Işık, Erdem & Inallı, Mustafa, 2018. "Artificial neural networks and adaptive neuro-fuzzy inference systems approaches to forecast the meteorological data for HVAC: The case of cities for Turkey," Energy, Elsevier, vol. 154(C), pages 7-16.
    11. Rodrigues, Eugénio & Gomes, Álvaro & Gaspar, Adélio Rodrigues & Henggeler Antunes, Carlos, 2018. "Estimation of renewable energy and built environment-related variables using neural networks – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 959-988.
    12. Khalil, Samy A. & Shaffie, A.M., 2016. "Attenuation of the solar energy by aerosol particles: A review and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 363-375.
    13. Karabacak, Kerim & Cetin, Numan, 2014. "Artificial neural networks for controlling wind–PV power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 804-827.
    14. Madkour, M.A. & El-Metwally, M. & Hamed, A.B., 2006. "Comparative study on different models for estimation of direct normal irradiance (DNI) over Egypt atmosphere," Renewable Energy, Elsevier, vol. 31(3), pages 361-382.
    15. Nasiri, Reza & Radan, Ahmad, 2011. "Pole-placement control of 4-leg voltage-source inverters for standalone photovoltaic systems: Considering digital delays," Renewable Energy, Elsevier, vol. 36(2), pages 858-865.
    16. Achour, Lazhar & Bouharkat, Malek & Assas, Ouarda & Behar, Omar, 2017. "Hybrid model for estimating monthly global solar radiation for the Southern of Algeria: (Case study: Tamanrasset, Algeria)," Energy, Elsevier, vol. 135(C), pages 526-539.
    17. Forero, N.L. & Caicedo, L.M. & Gordillo, G., 2007. "Correlation of global solar radiation values estimated and measured on an inclined surface for clear days in Bogotá," Renewable Energy, Elsevier, vol. 32(15), pages 2590-2602.
    18. Zendehboudi, Sohrab & Rezaei, Nima & Lohi, Ali, 2018. "Applications of hybrid models in chemical, petroleum, and energy systems: A systematic review," Applied Energy, Elsevier, vol. 228(C), pages 2539-2566.
    19. Nasiri, Reza & Radan, Ahmad, 2011. "Adaptive pole-placement control of 4-leg voltage-source inverters for standalone photovoltaic systems," Renewable Energy, Elsevier, vol. 36(7), pages 2032-2042.
    20. Suganthi, L. & Iniyan, S. & Samuel, Anand A., 2015. "Applications of fuzzy logic in renewable energy systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 585-607.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:101:y:2017:i:c:p:347-355. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.