IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v93y2016icp620-635.html
   My bibliography  Save this article

Aerodynamic wind-turbine rotor design using surrogate modeling and three-dimensional viscous–inviscid interaction technique

Author

Listed:
  • Sessarego, Matias
  • Ramos-García, Néstor
  • Yang, Hua
  • Shen, Wen Zhong

Abstract

In this paper a surrogate optimization methodology using a three-dimensional viscous-inviscid interaction code for the aerodynamic design of wind-turbine rotors is presented. The framework presents a unique approach because it does not require the commonly-used blade element momentum (BEM) method. The three-dimensional viscous-inviscid interaction code used here is the accurate and fast MIRAS code developed at the Technical University of Denmark. In comparison with BEM, MIRAS is a higher-fidelity aerodynamic tool and thus more computationally expensive as well. Designing a rotor using MIRAS instead of an inexpensive BEM code represents a challenge, which is resolved by using the proposed surrogate-based approach. As a verification case, the methodology is applied to design a model wind-turbine rotor and is compared in detail with the one designed with BEM. Results demonstrate that nearly identical aerodynamic performance can be achieved using the new design method and that the methodology is effective for the aerodynamic design of wind-turbine rotors.

Suggested Citation

  • Sessarego, Matias & Ramos-García, Néstor & Yang, Hua & Shen, Wen Zhong, 2016. "Aerodynamic wind-turbine rotor design using surrogate modeling and three-dimensional viscous–inviscid interaction technique," Renewable Energy, Elsevier, vol. 93(C), pages 620-635.
  • Handle: RePEc:eee:renene:v:93:y:2016:i:c:p:620-635
    DOI: 10.1016/j.renene.2016.03.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116302117
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.03.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ashuri, T. & Zaaijer, M.B. & Martins, J.R.R.A. & van Bussel, G.J.W. & van Kuik, G.A.M., 2014. "Multidisciplinary design optimization of offshore wind turbines for minimum levelized cost of energy," Renewable Energy, Elsevier, vol. 68(C), pages 893-905.
    2. Ramos-García, Néstor & Sørensen, Jens Nørkær & Shen, Wen Zhong, 2014. "Validation of a three-dimensional viscous–inviscid interactive solver for wind turbine rotors," Renewable Energy, Elsevier, vol. 70(C), pages 78-92.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dai, Juchuan & Tan, Yayi & Shen, Xiangbin, 2019. "Investigation of energy output in mountain wind farm using multiple-units SCADA data," Applied Energy, Elsevier, vol. 239(C), pages 225-238.
    2. Hyeonjeong Ahn & Hyunkyoung Shin, 2020. "Experimental and Numerical Analysis of a 10 MW Floating Offshore Wind Turbine in Regular Waves," Energies, MDPI, vol. 13(10), pages 1-17, May.
    3. Yanfang Lv & Liping Sun & Michael M. Bernitsas & Mengjie Jiang & Hai Sun, 2021. "Modelling of a Flow-Induced Oscillation, Two-Cylinder, Hydrokinetic Energy Converter Based on Experimental Data," Energies, MDPI, vol. 14(4), pages 1-24, February.
    4. Sessarego, Matias & Feng, Ju & Ramos-García, Néstor & Horcas, Sergio González, 2020. "Design optimization of a curved wind turbine blade using neural networks and an aero-elastic vortex method under turbulent inflow," Renewable Energy, Elsevier, vol. 146(C), pages 1524-1535.
    5. Zhiqiang Yang & Minghui Yin & Yan Xu & Yun Zou & Zhao Yang Dong & Qian Zhou, 2016. "Inverse Aerodynamic Optimization Considering Impacts of Design Tip Speed Ratio for Variable-Speed Wind Turbines," Energies, MDPI, vol. 9(12), pages 1-15, December.
    6. Santhanam, Chandramouli & Riva, Riccardo & Knudsen, Torben, 2023. "A study of Stall-Induced Vibrations using Surrogate-Based Optimization," Renewable Energy, Elsevier, vol. 214(C), pages 201-215.
    7. Zhenye Sun & Matias Sessarego & Jin Chen & Wen Zhong Shen, 2017. "Design of the OffWindChina 5 MW Wind Turbine Rotor," Energies, MDPI, vol. 10(6), pages 1-20, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Reddy, Sohail R., 2021. "A machine learning approach for modeling irregular regions with multiple owners in wind farm layout design," Energy, Elsevier, vol. 220(C).
    2. Escalera Mendoza, Alejandra S. & Griffith, D. Todd & Jeong, Michael & Qin, Chris & Loth, Eric & Phadnis, Mandar & Pao, Lucy & Selig, Michael S., 2023. "Aero-structural rapid screening of new design concepts for offshore wind turbines," Renewable Energy, Elsevier, vol. 219(P2).
    3. Michael K. McWilliam & Antariksh C. Dicholkar & Frederik Zahle & Taeseong Kim, 2022. "Post-Optimum Sensitivity Analysis with Automatically Tuned Numerical Gradients Applied to Swept Wind Turbine Blades," Energies, MDPI, vol. 15(9), pages 1-19, April.
    4. Gonzalez Silva, Jean & Ferrari, Riccardo & van Wingerden, Jan-Willem, 2023. "Wind farm control for wake-loss compensation, thrust balancing and load-limiting of turbines," Renewable Energy, Elsevier, vol. 203(C), pages 421-433.
    5. Ozan Gözcü & Taeseong Kim & David Robert Verelst & Michael K. McWilliam, 2022. "Swept Blade Dynamic Investigations for a 100 kW Small Wind Turbine," Energies, MDPI, vol. 15(9), pages 1-22, April.
    6. van Dijk, Mike T. & van Wingerden, Jan-Willem & Ashuri, Turaj & Li, Yaoyu, 2017. "Wind farm multi-objective wake redirection for optimizing power production and loads," Energy, Elsevier, vol. 121(C), pages 561-569.
    7. Hailun Xie & Lars Johanning, 2023. "A Hierarchical Met-Ocean Data Selection Model for Fast O&M Simulation in Offshore Renewable Energy Systems," Energies, MDPI, vol. 16(3), pages 1-20, February.
    8. Sedaghat, Ahmad & Hassanzadeh, Arash & Jamali, Jamaloddin & Mostafaeipour, Ali & Chen, Wei-Hsin, 2017. "Determination of rated wind speed for maximum annual energy production of variable speed wind turbines," Applied Energy, Elsevier, vol. 205(C), pages 781-789.
    9. Koh, J.H. & Ng, E.Y.K., 2016. "Downwind offshore wind turbines: Opportunities, trends and technical challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 797-808.
    10. Zhu, Jie & Zhou, Zhong & Cai, Xin, 2020. "Multi-objective aerodynamic and structural integrated optimization design of wind turbines at the system level through a coupled blade-tower model," Renewable Energy, Elsevier, vol. 150(C), pages 523-537.
    11. Jie Zhu & Xin Cai & Rongrong Gu, 2017. "Multi-Objective Aerodynamic and Structural Optimization of Horizontal-Axis Wind Turbine Blades," Energies, MDPI, vol. 10(1), pages 1-18, January.
    12. Giahi, Mohammad Hossein & Jafarian Dehkordi, Ali, 2016. "Investigating the influence of dimensional scaling on aerodynamic characteristics of wind turbine using CFD simulation," Renewable Energy, Elsevier, vol. 97(C), pages 162-168.
    13. Kang-Ho Jang & Ki-Wahn Ryu, 2023. "Blade Design and Aerodynamic Performance Analysis of a 20 MW Wind Turbine for LCoE Reduction," Energies, MDPI, vol. 16(13), pages 1-24, July.
    14. Martinez, A. & Iglesias, G., 2022. "Mapping of the levelised cost of energy for floating offshore wind in the European Atlantic," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    15. Kyoungboo Yang, 2020. "Geometry Design Optimization of a Wind Turbine Blade Considering Effects on Aerodynamic Performance by Linearization," Energies, MDPI, vol. 13(9), pages 1-18, May.
    16. Khazaee, Meghdad & Derian, Pierre & Mouraud, Anthony, 2022. "A comprehensive study on Structural Health Monitoring (SHM) of wind turbine blades by instrumenting tower using machine learning methods," Renewable Energy, Elsevier, vol. 199(C), pages 1568-1579.
    17. Chen, Z.J. & Stol, K.A. & Mace, B.R., 2017. "Wind turbine blade optimisation with individual pitch and trailing edge flap control," Renewable Energy, Elsevier, vol. 103(C), pages 750-765.
    18. Al-Nassar, W.K. & Neelamani, S. & Al-Salem, K.A. & Al-Dashti, H.A., 2019. "Feasibility of offshore wind energy as an alternative source for the state of Kuwait," Energy, Elsevier, vol. 169(C), pages 783-796.
    19. James Roetzer & Xingjie Li & John Hall, 2024. "Review of Data-Driven Models in Wind Energy: Demonstration of Blade Twist Optimization Based on Aerodynamic Loads," Energies, MDPI, vol. 17(16), pages 1-20, August.
    20. Mohammad Barooni & Turaj Ashuri & Deniz Velioglu Sogut & Stephen Wood & Shiva Ghaderpour Taleghani, 2022. "Floating Offshore Wind Turbines: Current Status and Future Prospects," Energies, MDPI, vol. 16(1), pages 1-28, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:93:y:2016:i:c:p:620-635. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.