Modelling of a Flow-Induced Oscillation, Two-Cylinder, Hydrokinetic Energy Converter Based on Experimental Data
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Sun, Hai & Kim, Eun Soo & Nowakowski, Gary & Mauer, Erik & Bernitsas, Michael M., 2016. "Effect of mass-ratio, damping, and stiffness on optimal hydrokinetic energy conversion of a single, rough cylinder in flow induced motions," Renewable Energy, Elsevier, vol. 99(C), pages 936-959.
- Sun, Hai & Ma, Chunhui & Kim, Eun Soo & Nowakowski, Gary & Mauer, Erik & Bernitsas, Michael M., 2017. "Hydrokinetic energy conversion by two rough tandem-cylinders in flow induced motions: Effect of spacing and stiffness," Renewable Energy, Elsevier, vol. 107(C), pages 61-80.
- Sun, Hai & Bernitsas, Marinos M. & Turkol, Mert, 2020. "Adaptive harnessing damping in hydrokinetic energy conversion by two rough tandem-cylinders using flow-induced vibrations," Renewable Energy, Elsevier, vol. 149(C), pages 828-860.
- Lund, Henrik, 2007. "Renewable energy strategies for sustainable development," Energy, Elsevier, vol. 32(6), pages 912-919.
- Ding, Lin & Zhang, Li & Bernitsas, Michael M. & Chang, Che-Chun, 2016. "Numerical simulation and experimental validation for energy harvesting of single-cylinder VIVACE converter with passive turbulence control," Renewable Energy, Elsevier, vol. 85(C), pages 1246-1259.
- Yadav, Amit Kumar & Sharma, Vikrant & Malik, Hasmat & Chandel, S.S., 2018. "Daily array yield prediction of grid-interactive photovoltaic plant using relief attribute evaluator based Radial Basis Function Neural Network," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2115-2127.
- Sessarego, Matias & Ramos-García, Néstor & Yang, Hua & Shen, Wen Zhong, 2016. "Aerodynamic wind-turbine rotor design using surrogate modeling and three-dimensional viscous–inviscid interaction technique," Renewable Energy, Elsevier, vol. 93(C), pages 620-635.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Li, Weijie & Zhang, Dahai & Shi, Xiaofeng, 2024. "Research on the impact of system parameter combinations on flow-induced vibration power generation characteristics based on exploratory data analysis," Renewable Energy, Elsevier, vol. 224(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lv, Yanfang & Sun, Liping & Bernitsas, Michael M. & Sun, Hai, 2021. "A comprehensive review of nonlinear oscillators in hydrokinetic energy harnessing using flow-induced vibrations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
- Tamimi, V. & Wu, J. & Esfehani, M.J. & Zeinoddini, M. & Naeeni, S.T.O., 2022. "Comparison of hydrokinetic energy harvesting performance of a fluttering hydrofoil against other Flow-Induced Vibration (FIV) mechanisms," Renewable Energy, Elsevier, vol. 186(C), pages 157-172.
- Zhang, Baoshou & Mao, Zhaoyong & Wang, Liang & Fu, Song & Ding, Wenjun, 2021. "A novel V-shaped layout method for VIV hydrokinetic energy converters inspired by geese flying in a V-Formation," Energy, Elsevier, vol. 230(C).
- Li, Ningyu & Park, Hongrae & Sun, Hai & Bernitsas, Michael M., 2022. "Hydrokinetic energy conversion using flow induced oscillations of single-cylinder with large passive turbulence control," Applied Energy, Elsevier, vol. 308(C).
- Zhang, Baoshou & Mao, Zhaoyong & Song, Baowei & Ding, Wenjun & Tian, Wenlong, 2018. "Numerical investigation on effect of damping-ratio and mass-ratio on energy harnessing of a square cylinder in FIM," Energy, Elsevier, vol. 144(C), pages 218-231.
- Park, Hongrae & Mentzelopoulos, Andreas P. & Bernitsas, Michael M., 2023. "Hydrokinetic energy harvesting from slow currents using flow-induced oscillations," Renewable Energy, Elsevier, vol. 214(C), pages 242-254.
- Zhu, Hongjun & Gao, Yue, 2018. "Hydrokinetic energy harvesting from flow-induced vibration of a circular cylinder with two symmetrical fin-shaped strips," Energy, Elsevier, vol. 165(PB), pages 1259-1281.
- Rashki, M.R. & Hejazi, K. & Tamimi, V. & Zeinoddini, M. & Bagherpour, P. & Aalami Harandi, M.M., 2023. "Electromagnetic energy harvesting from 2DOF-VIV of circular oscillators: Impacts of soft marine fouling," Energy, Elsevier, vol. 282(C).
- Gu, Mengfan & Song, Baowei & Zhang, Baoshou & Mao, Zhaoyong & Tian, Wenlong, 2020. "The effects of submergence depth on Vortex-Induced Vibration (VIV) and energy harvesting of a circular cylinder," Renewable Energy, Elsevier, vol. 151(C), pages 931-945.
- Zhu, Hongjun & Zhao, Ying & Zhou, Tongming, 2018. "CFD analysis of energy harvesting from flow induced vibration of a circular cylinder with an attached free-to-rotate pentagram impeller," Applied Energy, Elsevier, vol. 212(C), pages 304-321.
- Zhang, Baoshou & Wang, Keh-Han & Song, Baowei & Mao, Zhaoyong & Tian, Wenlong, 2018. "Numerical investigation on the effect of the cross-sectional aspect ratio of a rectangular cylinder in FIM on hydrokinetic energy conversion," Energy, Elsevier, vol. 165(PA), pages 949-964.
- Zhang, Baoshou & Li, Boyang & Fu, Song & Mao, Zhaoyong & Ding, Wenjun, 2022. "Vortex-Induced Vibration (VIV) hydrokinetic energy harvesting based on nonlinear damping," Renewable Energy, Elsevier, vol. 195(C), pages 1050-1063.
- Li, Weijie & Zhang, Dahai & Shi, Xiaofeng, 2024. "Research on the impact of system parameter combinations on flow-induced vibration power generation characteristics based on exploratory data analysis," Renewable Energy, Elsevier, vol. 224(C).
- Zhang, Baoshou & Song, Baowei & Mao, Zhaoyong & Li, Boyang & Gu, Mengfan, 2019. "Hydrokinetic energy harnessing by spring-mounted oscillators in FIM with different cross sections: From triangle to circle," Energy, Elsevier, vol. 189(C).
- Dahai Zhang & Lei Feng & Hao Yang & Tianjiao Li & Hai Sun, 2020. "Vortex-Induced Vibration Characteristics of a PTC Cylinder with a Free Surface Effect," Energies, MDPI, vol. 13(4), pages 1-19, February.
- Zhang, Baoshou & Li, Boyang & Li, Canpeng & Yu, Haidong & Wang, Dezheng & Shi, Renhe, 2023. "Effects of variable damping on hydrokinetic energy conversion of a cylinder using wake-induced vibration," Renewable Energy, Elsevier, vol. 213(C), pages 176-194.
- Sun, Hai & Bernitsas, Marinos M. & Turkol, Mert, 2020. "Adaptive harnessing damping in hydrokinetic energy conversion by two rough tandem-cylinders using flow-induced vibrations," Renewable Energy, Elsevier, vol. 149(C), pages 828-860.
- Shao, Nan & Lian, Jijian & Liu, Fang & Yan, Xiang & Li, Peiyao, 2020. "Experimental investigation of flow induced motion and energy conversion for triangular prism," Energy, Elsevier, vol. 194(C).
- Tamimi, V. & Wu, J. & Naeeni, S.T.O. & Shahvaghar-Asl, S., 2021. "Effects of dissimilar wakes on energy harvesting of Flow Induced Vibration (FIV) based converters with circular oscillator," Applied Energy, Elsevier, vol. 281(C).
- Zhang, Baoshou & Li, Boyang & Fu, Song & Ding, Wenjun & Mao, Zhaoyong, 2022. "Experimental investigation of the effect of high damping on the VIV energy converter near the free surface," Energy, Elsevier, vol. 244(PA).
More about this item
Keywords
modeling; flow-induced oscillation; vortex-induced oscillation; galloping; backpropagation neural network; two tandem cylinders; harnessed power and efficiency;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:827-:d:493874. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.