IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i6p777-d100461.html
   My bibliography  Save this article

Design of the OffWindChina 5 MW Wind Turbine Rotor

Author

Listed:
  • Zhenye Sun

    (State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400044, China)

  • Matias Sessarego

    (Department of Wind Energy, Fluid Mechanics Section, Technical University of Denmark, Nils Koppels Allé, Building 403, Lyngby 2800, Denmark)

  • Jin Chen

    (State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400044, China)

  • Wen Zhong Shen

    (Department of Wind Energy, Fluid Mechanics Section, Technical University of Denmark, Nils Koppels Allé, Building 403, Lyngby 2800, Denmark)

Abstract

The current article describes the conceptual design of a rotor for a 5 MW machine situated at an offshore site in China (OffWindChina). The OffWindChina 5 MW rotor design work was divided into two parts between the Technical University of Denmark (DTU) and the Chong Qing University (CQU). The two parts consist of the aeroelastic and structural design phases. The aeroelastic part determines the optimal outer blade shape in terms of cost of energy (COE), while the structural part determines the internal laminate layup to achieve a minimum blade mass. Each part is performed sequentially using in-house optimization tools developed at DTU and CQU. The designed blade yields a high energy output while maintaining the structural feasibility with respect to international standards.

Suggested Citation

  • Zhenye Sun & Matias Sessarego & Jin Chen & Wen Zhong Shen, 2017. "Design of the OffWindChina 5 MW Wind Turbine Rotor," Energies, MDPI, vol. 10(6), pages 1-20, June.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:6:p:777-:d:100461
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/6/777/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/6/777/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mostafaeipour, Ali, 2010. "Feasibility study of offshore wind turbine installation in Iran compared with the world," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1722-1743, September.
    2. Chehouri, Adam & Younes, Rafic & Ilinca, Adrian & Perron, Jean, 2015. "Review of performance optimization techniques applied to wind turbines," Applied Energy, Elsevier, vol. 142(C), pages 361-388.
    3. Jie Zhu & Xin Cai & Rongrong Gu, 2016. "Aerodynamic and Structural Integrated Optimization Design of Horizontal-Axis Wind Turbine Blades," Energies, MDPI, vol. 9(2), pages 1-18, January.
    4. Vesel, Richard W. & McNamara, Jack J., 2014. "Performance enhancement and load reduction of a 5 MW wind turbine blade," Renewable Energy, Elsevier, vol. 66(C), pages 391-401.
    5. Breton, Simon-Philippe & Moe, Geir, 2009. "Status, plans and technologies for offshore wind turbines in Europe and North America," Renewable Energy, Elsevier, vol. 34(3), pages 646-654.
    6. Bilgili, Mehmet & Yasar, Abdulkadir & Simsek, Erdogan, 2011. "Offshore wind power development in Europe and its comparison with onshore counterpart," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 905-915, February.
    7. Sessarego, Matias & Ramos-García, Néstor & Yang, Hua & Shen, Wen Zhong, 2016. "Aerodynamic wind-turbine rotor design using surrogate modeling and three-dimensional viscous–inviscid interaction technique," Renewable Energy, Elsevier, vol. 93(C), pages 620-635.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antoine Chrétien & Antoine Tahan & Philippe Cambron & Adaiton Oliveira-Filho, 2023. "Operational Wind Turbine Blade Damage Evaluation Based on 10-min SCADA and 1 Hz Data," Energies, MDPI, vol. 16(7), pages 1-18, March.
    2. Sessarego, Matias & Feng, Ju & Ramos-García, Néstor & Horcas, Sergio González, 2020. "Design optimization of a curved wind turbine blade using neural networks and an aero-elastic vortex method under turbulent inflow," Renewable Energy, Elsevier, vol. 146(C), pages 1524-1535.
    3. Zhenye Sun & Wei Jun Zhu & Wen Zhong Shen & Wei Zhong & Jiufa Cao & Qiuhan Tao, 2020. "Aerodynamic Analysis of Coning Effects on the DTU 10 MW Wind Turbine Rotor," Energies, MDPI, vol. 13(21), pages 1-19, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. McKenna, R. & Ostman v.d. Leye, P. & Fichtner, W., 2016. "Key challenges and prospects for large wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1212-1221.
    2. Ochieng, E.G. & Melaine, Y. & Potts, S.J. & Zuofa, T. & Egbu, C.O. & Price, A.D.F. & Ruan, X., 2014. "Future for offshore wind energy in the United Kingdom: The way forward," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 655-666.
    3. Sun, Xiaojing & Huang, Diangui & Wu, Guoqing, 2012. "The current state of offshore wind energy technology development," Energy, Elsevier, vol. 41(1), pages 298-312.
    4. Zountouridou, E.I. & Kiokes, G.C. & Chakalis, S. & Georgilakis, P.S. & Hatziargyriou, N.D., 2015. "Offshore floating wind parks in the deep waters of Mediterranean Sea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 433-448.
    5. Al-Nassar, W.K. & Neelamani, S. & Al-Salem, K.A. & Al-Dashti, H.A., 2019. "Feasibility of offshore wind energy as an alternative source for the state of Kuwait," Energy, Elsevier, vol. 169(C), pages 783-796.
    6. Gallagher, Sarah & Tiron, Roxana & Whelan, Eoin & Gleeson, Emily & Dias, Frédéric & McGrath, Ray, 2016. "The nearshore wind and wave energy potential of Ireland: A high resolution assessment of availability and accessibility," Renewable Energy, Elsevier, vol. 88(C), pages 494-516.
    7. Kern, Florian & Smith, Adrian & Shaw, Chris & Raven, Rob & Verhees, Bram, 2014. "From laggard to leader: Explaining offshore wind developments in the UK," Energy Policy, Elsevier, vol. 69(C), pages 635-646.
    8. Hu, Huakun & Xue, Wendong & Jiang, Peng & Li, Yong, 2022. "Bibliometric analysis for ocean renewable energy: An comprehensive review for hotspots, frontiers, and emerging trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    9. Kaldellis, J.K. & Kapsali, M., 2013. "Shifting towards offshore wind energy—Recent activity and future development," Energy Policy, Elsevier, vol. 53(C), pages 136-148.
    10. Li, Jiale & Yu, Xiong (Bill), 2018. "Onshore and offshore wind energy potential assessment near Lake Erie shoreline: A spatial and temporal analysis," Energy, Elsevier, vol. 147(C), pages 1092-1107.
    11. Rodrigues, S. & Restrepo, C. & Kontos, E. & Teixeira Pinto, R. & Bauer, P., 2015. "Trends of offshore wind projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1114-1135.
    12. Oh, Ki-Yong & Nam, Woochul & Ryu, Moo Sung & Kim, Ji-Young & Epureanu, Bogdan I., 2018. "A review of foundations of offshore wind energy convertors: Current status and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 16-36.
    13. Assareh, Ehsanolah & Biglari, Mojtaba, 2015. "A novel approach to capture the maximum power from variable speed wind turbines using PI controller, RBF neural network and GSA evolutionary algorithm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1023-1037.
    14. Dai, Juchuan & Tan, Yayi & Shen, Xiangbin, 2019. "Investigation of energy output in mountain wind farm using multiple-units SCADA data," Applied Energy, Elsevier, vol. 239(C), pages 225-238.
    15. Apostolos Tsouvalas, 2020. "Underwater Noise Emission Due to Offshore Pile Installation: A Review," Energies, MDPI, vol. 13(12), pages 1-41, June.
    16. Meng, Hang & Lien, Fue-Sang & Yee, Eugene & Shen, Jingfang, 2020. "Modelling of anisotropic beam for rotating composite wind turbine blade by using finite-difference time-domain (FDTD) method," Renewable Energy, Elsevier, vol. 162(C), pages 2361-2379.
    17. Margielewicz, Jerzy & Gąska, Damian & Litak, Grzegorz & Wolszczak, Piotr & Yurchenko, Daniil, 2022. "Nonlinear dynamics of a new energy harvesting system with quasi-zero stiffness," Applied Energy, Elsevier, vol. 307(C).
    18. Luigi Aldieri & Jonas Grafström & Kristoffer Sundström & Concetto Paolo Vinci, 2019. "Wind Power and Job Creation," Sustainability, MDPI, vol. 12(1), pages 1-23, December.
    19. Fazelpour, Farivar & Markarian, Elin & Soltani, Nima, 2017. "Wind energy potential and economic assessment of four locations in Sistan and Balouchestan province in Iran," Renewable Energy, Elsevier, vol. 109(C), pages 646-667.
    20. Sun, Alexander Y., 2020. "Optimal carbon storage reservoir management through deep reinforcement learning," Applied Energy, Elsevier, vol. 278(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:6:p:777-:d:100461. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.