IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i9p3005-d797834.html
   My bibliography  Save this article

Swept Blade Dynamic Investigations for a 100 kW Small Wind Turbine

Author

Listed:
  • Ozan Gözcü

    (Department of Wind and Energy System, Technical University of Denmark (DTU), Frederiksborgvej 399, 4000 Roskilde, Denmark)

  • Taeseong Kim

    (Department of Wind and Energy System, Technical University of Denmark (DTU), Frederiksborgvej 399, 4000 Roskilde, Denmark)

  • David Robert Verelst

    (Department of Wind and Energy System, Technical University of Denmark (DTU), Frederiksborgvej 399, 4000 Roskilde, Denmark)

  • Michael K. McWilliam

    (Department of Wind and Energy System, Technical University of Denmark (DTU), Frederiksborgvej 399, 4000 Roskilde, Denmark)

Abstract

Most small–medium-sized turbine studies have focused on presenting new design methods and corresponding performance improvements rather than detailed dynamic investigations. This paper presents comprehensive dynamic investigations of a straight and a swept-back blade for a 100 k W turbine by performing modal analysis, dynamic load analysis, and flutter analysis. The considered load cases include steady wind and operational conditions under normal and extreme turbulence. Modal results show that although both blades have similar natural frequencies, their mode shapes are quite different due to the couplings in flapwise-torsion directions introduced by the back-swept geometry. This coupling alters the aeroelastic response of the blade, which results in different loads in the operational conditions. The load analysis results show that the blade damage equivalent fatigue loads for the swept blade are much lower (up to 29% for the flapwise bending moment and 31% for the edgewise bending moment) than the straight blade. For the ultimate loads, blade root edgewise load for the swept blade is almost 50% lower than the straight blade while the flapwise ultimate load is similar for both blades. Moreover, both blades have no aeroelastic instability near the operational conditions, and the flutter limit for the swept-back blade is lower than the straight blade.

Suggested Citation

  • Ozan Gözcü & Taeseong Kim & David Robert Verelst & Michael K. McWilliam, 2022. "Swept Blade Dynamic Investigations for a 100 kW Small Wind Turbine," Energies, MDPI, vol. 15(9), pages 1-22, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3005-:d:797834
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/9/3005/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/9/3005/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Caio Cesar Moreira Chagas & Marcio Giannini Pereira & Luiz Pinguelli Rosa & Neilton Fidelis da Silva & Marcos Aurélio Vasconcelos Freitas & Julian David Hunt, 2020. "From Megawatts to Kilowatts: A Review of Small Wind Turbine Applications, Lessons From The US to Brazil," Sustainability, MDPI, vol. 12(7), pages 1-25, April.
    2. Kim, Taeseong & Hansen, Anders M. & Branner, Kim, 2013. "Development of an anisotropic beam finite element for composite wind turbine blades in multibody system," Renewable Energy, Elsevier, vol. 59(C), pages 172-183.
    3. Ashuri, T. & Zaaijer, M.B. & Martins, J.R.R.A. & van Bussel, G.J.W. & van Kuik, G.A.M., 2014. "Multidisciplinary design optimization of offshore wind turbines for minimum levelized cost of energy," Renewable Energy, Elsevier, vol. 68(C), pages 893-905.
    4. Maki, Kevin & Sbragio, Ricardo & Vlahopoulos, Nickolas, 2012. "System design of a wind turbine using a multi-level optimization approach," Renewable Energy, Elsevier, vol. 43(C), pages 101-110.
    5. Pourrajabian, Abolfazl & Nazmi Afshar, Peyman Amir & Ahmadizadeh, Mehdi & Wood, David, 2016. "Aero-structural design and optimization of a small wind turbine blade," Renewable Energy, Elsevier, vol. 87(P2), pages 837-848.
    6. Karthikeyan, N. & Kalidasa Murugavel, K. & Arun Kumar, S. & Rajakumar, S., 2015. "Review of aerodynamic developments on small horizontal axis wind turbine blade," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 801-822.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dongmyoung Kim & Taesu Jeon & Insu Paek & Wirachai Roynarin & Boonyang Plangklang & Bayasgalan Dugarjav, 2023. "A Study on the Improved Power Control Algorithm for a 100 kW Wind Turbine," Energies, MDPI, vol. 16(2), pages 1-15, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Z.J. & Stol, K.A. & Mace, B.R., 2017. "Wind turbine blade optimisation with individual pitch and trailing edge flap control," Renewable Energy, Elsevier, vol. 103(C), pages 750-765.
    2. Escalera Mendoza, Alejandra S. & Griffith, D. Todd & Jeong, Michael & Qin, Chris & Loth, Eric & Phadnis, Mandar & Pao, Lucy & Selig, Michael S., 2023. "Aero-structural rapid screening of new design concepts for offshore wind turbines," Renewable Energy, Elsevier, vol. 219(P2).
    3. N. Aravindhan & M. P. Natarajan & S. Ponnuvel & P.K. Devan, 2023. "Recent developments and issues of small-scale wind turbines in urban residential buildings- A review," Energy & Environment, , vol. 34(4), pages 1142-1169, June.
    4. José Luis Torres-Madroñero & Joham Alvarez-Montoya & Daniel Restrepo-Montoya & Jorge Mario Tamayo-Avendaño & César Nieto-Londoño & Julián Sierra-Pérez, 2020. "Technological and Operational Aspects That Limit Small Wind Turbines Performance," Energies, MDPI, vol. 13(22), pages 1-39, November.
    5. Zhu, Jie & Zhou, Zhong & Cai, Xin, 2020. "Multi-objective aerodynamic and structural integrated optimization design of wind turbines at the system level through a coupled blade-tower model," Renewable Energy, Elsevier, vol. 150(C), pages 523-537.
    6. Jie Zhu & Xin Cai & Rongrong Gu, 2017. "Multi-Objective Aerodynamic and Structural Optimization of Horizontal-Axis Wind Turbine Blades," Energies, MDPI, vol. 10(1), pages 1-18, January.
    7. Barooni, M. & Ale Ali, N. & Ashuri, T., 2018. "An open-source comprehensive numerical model for dynamic response and loads analysis of floating offshore wind turbines," Energy, Elsevier, vol. 154(C), pages 442-454.
    8. Meng, Hang & Lien, Fue-Sang & Yee, Eugene & Shen, Jingfang, 2020. "Modelling of anisotropic beam for rotating composite wind turbine blade by using finite-difference time-domain (FDTD) method," Renewable Energy, Elsevier, vol. 162(C), pages 2361-2379.
    9. Ali, Qazi Shahzad & Kim, Man-Hoe, 2022. "Power conversion performance of airborne wind turbine under unsteady loads," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    10. Reddy, Sohail R., 2021. "A machine learning approach for modeling irregular regions with multiple owners in wind farm layout design," Energy, Elsevier, vol. 220(C).
    11. Seo, Junwon & Pokhrel, Jharna & Hu, Jong Wan, 2022. "Multi-Hazard Fragility Analysis of Offshore Wind Turbine Portfolios using Surrogate Models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    12. Ikeda, Teruaki & Tanaka, Hiroto & Yoshimura, Ryosuke & Noda, Ryusuke & Fujii, Takeo & Liu, Hao, 2018. "A robust biomimetic blade design for micro wind turbines," Renewable Energy, Elsevier, vol. 125(C), pages 155-165.
    13. Tania García-Sánchez & Arbinda Kumar Mishra & Elías Hurtado-Pérez & Rubén Puché-Panadero & Ana Fernández-Guillamón, 2020. "A Controller for Optimum Electrical Power Extraction from a Small Grid-Interconnected Wind Turbine," Energies, MDPI, vol. 13(21), pages 1-16, November.
    14. Baniassadi, Amir & Shirinbakhsh, Mehrdad & Torabi, Farschad, 2017. "Multivariate optimization of off-grid wind turbines with variable demand - Case study of a remote commercial building," Renewable Energy, Elsevier, vol. 101(C), pages 1021-1029.
    15. Pavese, Christian & Kim, Taeseong & Murcia, Juan Pablo, 2017. "Design of a wind turbine swept blade through extensive load analysis," Renewable Energy, Elsevier, vol. 102(PA), pages 21-34.
    16. Michael K. McWilliam & Antariksh C. Dicholkar & Frederik Zahle & Taeseong Kim, 2022. "Post-Optimum Sensitivity Analysis with Automatically Tuned Numerical Gradients Applied to Swept Wind Turbine Blades," Energies, MDPI, vol. 15(9), pages 1-19, April.
    17. Xu, Jin & Zhang, Lei & Li, Xue & Li, Shuang & Yang, Ke, 2020. "A study of dynamic response of a wind turbine blade based on the multi-body dynamics method," Renewable Energy, Elsevier, vol. 155(C), pages 358-368.
    18. Wolf-Gerrit Früh, 2023. "Assessing the Performance of Small Wind Energy Systems Using Regional Weather Data," Energies, MDPI, vol. 16(8), pages 1-21, April.
    19. Gonzalez Silva, Jean & Ferrari, Riccardo & van Wingerden, Jan-Willem, 2023. "Wind farm control for wake-loss compensation, thrust balancing and load-limiting of turbines," Renewable Energy, Elsevier, vol. 203(C), pages 421-433.
    20. Liew, Jaime & Lio, Wai Hou & Urbán, Albert Meseguer & Holierhoek, Jessica & Kim, Taeseong, 2020. "Active tip deflection control for wind turbines," Renewable Energy, Elsevier, vol. 149(C), pages 445-454.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3005-:d:797834. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.