IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v86y2016icp554-562.html
   My bibliography  Save this article

Kinetic modeling and simulation: Pyrolysis of Jatropha residue de-oiled cake

Author

Listed:
  • Sharma, Rajeev
  • Sheth, Pratik N.
  • Gujrathi, Ashish M.

Abstract

An improved kinetic model based on thermal decomposition of biomass constituents, i.e. cellulose, hemicellulose and lignin, is developed in the present study. The model considers the independent parallel reactions of order n producing volatiles and charcoal from each biomass constituent. While estimating the kinetic parameters, the order of degradation of biomass constituents is also checked and found to be matching with the order of degradation reported in the literature. The results of thermo-gravimetric analysis of Jatropha de-oiled cakes are used to find the kinetic parameters. The experimental runs are carried out using a thermo-gravimetric analyzer (TGA 4000, Perkin Elmer). TGA study is performed in a nitrogen atmosphere under non-isothermal conditions at different heating rates and the thermal decomposition profiles are used. The model is simulated using finite difference method to predict the pyrolysis rate. The corresponding parameters of the model are estimated by minimizing the square of the error between the model predicted values of residual weight fraction and the experimental data of thermogravimetry. The minimization of square of the error is performed using non-traditional optimization technique logarithmic differential evolution (LDE).

Suggested Citation

  • Sharma, Rajeev & Sheth, Pratik N. & Gujrathi, Ashish M., 2016. "Kinetic modeling and simulation: Pyrolysis of Jatropha residue de-oiled cake," Renewable Energy, Elsevier, vol. 86(C), pages 554-562.
  • Handle: RePEc:eee:renene:v:86:y:2016:i:c:p:554-562
    DOI: 10.1016/j.renene.2015.08.066
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115302664
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.08.066?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cai, Junmeng & Wu, Weixuan & Liu, Ronghou, 2014. "An overview of distributed activation energy model and its application in the pyrolysis of lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 236-246.
    2. Singh, R.N. & Vyas, D.K. & Srivastava, N.S.L. & Narra, Madhuri, 2008. "SPRERI experience on holistic approach to utilize all parts of Jatropha curcas fruit for energy," Renewable Energy, Elsevier, vol. 33(8), pages 1868-1873.
    3. Rao, T.Rajeswara & Sharma, Atul, 1998. "Pyrolysis rates of biomass materials," Energy, Elsevier, vol. 23(11), pages 973-978.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina, 2017. "Thermo-kinetic and diffusion studies of glycerol dehydration to acrolein using HSiW-γ-Al2O3 supported ZrO2 solid acid catalyst," Renewable Energy, Elsevier, vol. 114(PB), pages 794-804.
    2. Codignole Luz, Fàbio & Cordiner, Stefano & Manni, Alessandro & Mulone, Vincenzo & Rocco, Vittorio, 2018. "Biomass fast pyrolysis in a shaftless screw reactor: A 1-D numerical model," Energy, Elsevier, vol. 157(C), pages 792-805.
    3. Hemant Ghai & Deepak Sakhuja & Shikha Yadav & Preeti Solanki & Chayanika Putatunda & Ravi Kant Bhatia & Arvind Kumar Bhatt & Sunita Varjani & Yung-Hun Yang & Shashi Kant Bhatia & Abhishek Walia, 2022. "An Overview on Co-Pyrolysis of Biodegradable and Non-Biodegradable Wastes," Energies, MDPI, vol. 15(11), pages 1-27, June.
    4. Sharma, Rajeev & Sheth, Pratik N., 2018. "Multi reaction apparent kinetic scheme for the pyrolysis of large size biomass particles using macro-TGA," Energy, Elsevier, vol. 151(C), pages 1007-1017.
    5. Bhoi, P.R. & Ouedraogo, A.S. & Soloiu, V. & Quirino, R., 2020. "Recent advances on catalysts for improving hydrocarbon compounds in bio-oil of biomass catalytic pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    6. Lerkkasemsan, Nuttapol, 2017. "Fuzzy logic-based predictive model for biomass pyrolysis," Applied Energy, Elsevier, vol. 185(P2), pages 1019-1030.
    7. Zeng, Kuo & Soria, José & Gauthier, Daniel & Mazza, Germán & Flamant, Gilles, 2016. "Modeling of beech wood pellet pyrolysis under concentrated solar radiation," Renewable Energy, Elsevier, vol. 99(C), pages 721-729.
    8. Dhyani, Vaibhav & Bhaskar, Thallada, 2018. "A comprehensive review on the pyrolysis of lignocellulosic biomass," Renewable Energy, Elsevier, vol. 129(PB), pages 695-716.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Yantao & Qu, Xia & Huang, Guorun & Ren, Suxia & Dong, Lili & Sun, Tanglei & Liu, Peng & Li, Yanling & Lei, Tingzhou & Cai, Junmeng, 2023. "Insight into lignocellulosic biomass torrefaction kinetics with case study of pinewood sawdust torrefaction," Renewable Energy, Elsevier, vol. 215(C).
    2. Gupta, Aditi & Kumar, Ashwani & Sharma, Satyawati & Vijay, V.K., 2013. "Comparative evaluation of raw and detoxified mahua seed cake for biogas production," Applied Energy, Elsevier, vol. 102(C), pages 1514-1521.
    3. Ma, Junfang & Liu, Jiaxun & Jiang, Xiumin & Zhang, Hai, 2021. "A two-dimensional distributed activation energy model for pyrolysis of solid fuels," Energy, Elsevier, vol. 230(C).
    4. Pandey, Vimal Chandra & Singh, Kripal & Singh, Jay Shankar & Kumar, Akhilesh & Singh, Bajrang & Singh, Rana P., 2012. "Jatropha curcas: A potential biofuel plant for sustainable environmental development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2870-2883.
    5. Lim, Jeng Shiun & Abdul Manan, Zainuddin & Wan Alwi, Sharifah Rafidah & Hashim, Haslenda, 2012. "A review on utilisation of biomass from rice industry as a source of renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3084-3094.
    6. Chen, Jianbiao & Gao, Shuaifei & Xu, Fang & Xu, Wenhao & Yang, Yuanjiang & Kong, Depeng & Wang, Yinfeng & Yao, Huicong & Chen, Haijun & Zhu, Yuezhao & Mu, Lin, 2022. "Influence of moisture and feedstock form on the pyrolysis behaviors, pyrolytic gas production, and residues micro-structure evolutions of an industrial sludge from a steel production enterprise," Energy, Elsevier, vol. 248(C).
    7. Tatsidjodoung, Parfait & Dabat, Marie-Hélène & Blin, Joël, 2012. "Insights into biofuel development in Burkina Faso: Potential and strategies for sustainable energy policies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5319-5330.
    8. Feng, Yipeng & Qiu, Keying & Zhang, Zhiping & Li, Chong & Rahman, Md. Maksudur & Cai, Junmeng, 2022. "Distributed activation energy model for lignocellulosic biomass torrefaction kinetics with combined heating program," Energy, Elsevier, vol. 239(PC).
    9. Liu, Jiazheng & Zhong, Fei & Niu, Wenjuan & Su, Jing & Gao, Ziqi & Zhang, Kai, 2019. "Effects of heating rate and gas atmosphere on the pyrolysis and combustion characteristics of different crop residues and the kinetics analysis," Energy, Elsevier, vol. 175(C), pages 320-332.
    10. Alphonse Kayiranga & Baozhang Chen & Fei Wang & Winny Nthangeni & Adil Dilawar & Yves Hategekimana & Huifang Zhang & Lifeng Guo, 2022. "Spatiotemporal Variation in Gross Primary Productivity and Their Responses to Climate in the Great Lakes Region of Sub-Saharan Africa during 2001–2020," Sustainability, MDPI, vol. 14(5), pages 1-23, February.
    11. Chakraborty, Sourabh & Mohanty, Kaustubha & Vinu, Ravikrishnan, 2024. "Co-pyrolysis of bamboo biomass with polypropylene coverall: Distributed activation energy modeling and pyrolysate composition studies," Renewable Energy, Elsevier, vol. 220(C).
    12. Kadier, Abudukeremu & Kalil, Mohd Sahaid & Abdeshahian, Peyman & Chandrasekhar, K. & Mohamed, Azah & Azman, Nadia Farhana & Logroño, Washington & Simayi, Yibadatihan & Hamid, Aidil Abdul, 2016. "Recent advances and emerging challenges in microbial electrolysis cells (MECs) for microbial production of hydrogen and value-added chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 501-525.
    13. Gyeong-Min Kim & Dae-Gyun Lee & Chung-Hwan Jeon, 2019. "Fundamental Characteristics and Kinetic Analysis of Lignocellulosic Woody and Herbaceous Biomass Fuels," Energies, MDPI, vol. 12(6), pages 1-16, March.
    14. Fan, Honggang & Gu, Jing & Wang, Yazhuo & Yuan, Haoran & Chen, Yong, 2022. "Insight into the pyrolysis kinetics of cellulose, xylan and lignin with the addition of potassium and calcium based on distributed activation energy model," Energy, Elsevier, vol. 243(C).
    15. Zhang, Zhiqing & Duan, Hanqi & Zhang, Youjun & Guo, Xiaojuan & Yu, Xi & Zhang, Xingguang & Rahman, Md. Maksudur & Cai, Junmeng, 2020. "Investigation of kinetic compensation effect in lignocellulosic biomass torrefaction: Kinetic and thermodynamic analyses," Energy, Elsevier, vol. 207(C).
    16. Kratzeisen, M. & Müller, J., 2013. "Suitability of Jatropha seed shells as fuel for small-scale combustion units," Renewable Energy, Elsevier, vol. 51(C), pages 46-52.
    17. Tedla, Abeje & Minale, Mesafint & Eshetu, Reta, 2020. "Determination of the Upper Limit Age of Jatropha Curcas Plantation for Optimum Yield Production," Asian Business Review, Asian Business Consortium, vol. 10(1), pages 37-42.
    18. Navarro-Pineda, Freddy S. & Baz-Rodríguez, Sergio A. & Handler, Robert & Sacramento-Rivero, Julio C., 2016. "Advances on the processing of Jatropha curcas towards a whole-crop biorefinery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 247-269.
    19. Gouws, S.M. & Carrier, M. & Bunt, J.R. & Neomagus, H.W.J.P., 2021. "Co-pyrolysis of coal and raw/torrefied biomass: A review on chemistry, kinetics and implementation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    20. Sobek, Szymon & Werle, Sebastian, 2019. "Solar pyrolysis of waste biomass: Part 1 reactor design," Renewable Energy, Elsevier, vol. 143(C), pages 1939-1948.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:86:y:2016:i:c:p:554-562. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.