IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v151y2018icp1007-1017.html
   My bibliography  Save this article

Multi reaction apparent kinetic scheme for the pyrolysis of large size biomass particles using macro-TGA

Author

Listed:
  • Sharma, Rajeev
  • Sheth, Pratik N.

Abstract

In the present study, the pyrolysis of biomass is proposed by one step multi reaction apparent model. It is expressed as parallel production of bio-oil, gases and charcoal. Macro TGA of Jatropha de-oiled cake is performed at temperatures ranging from 350 °C to 700 °C. The volatiles released during pyrolysis exits from the top of the reactor and are cooled in a two-stage condenser followed by an ice trap. The weight reduction variation of the biomass with time, product yield and composition of non condensable gases are measured and used to develop the apparent kinetic model. The corresponding apparent kinetic parameters are estimated by minimizing the square of the error between simulated values of residual weight fraction and experimental values using non-traditional optimization technique logarithmic differential evolution (LDE). The weight reduction with time suggests that the pyrolysis of de-oiled cake is carried out in three stages. The maximum liquid yield obtained is 31.2% at 500 °C, which further decreases with an increase in temperature. The model predicted values of residual weight fractions and yield of products are matching very well with the experimental data for all reactor temperature.

Suggested Citation

  • Sharma, Rajeev & Sheth, Pratik N., 2018. "Multi reaction apparent kinetic scheme for the pyrolysis of large size biomass particles using macro-TGA," Energy, Elsevier, vol. 151(C), pages 1007-1017.
  • Handle: RePEc:eee:energy:v:151:y:2018:i:c:p:1007-1017
    DOI: 10.1016/j.energy.2018.03.075
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218304845
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.03.075?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xuan, Jin & Leung, Michael K.H. & Leung, Dennis Y.C. & Ni, Meng, 2009. "A review of biomass-derived fuel processors for fuel cell systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1301-1313, August.
    2. Patra, Tapas Kumar & Nimisha, K.R. & Sheth, Pratik N., 2016. "A comprehensive dynamic model for downdraft gasifier using heat and mass transport coupled with reaction kinetics," Energy, Elsevier, vol. 116(P1), pages 1230-1242.
    3. Sharma, Rajeev & Sheth, Pratik N. & Gujrathi, Ashish M., 2016. "Kinetic modeling and simulation: Pyrolysis of Jatropha residue de-oiled cake," Renewable Energy, Elsevier, vol. 86(C), pages 554-562.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wardach-Świȩcicka, Izabela & Kardaś, Dariusz, 2021. "Modelling thermal behaviour of a single solid particle pyrolysing in a hot gas flow," Energy, Elsevier, vol. 221(C).
    2. Ding, Yanming & Zhang, Wenlong & Yu, Lei & Lu, Kaihua, 2019. "The accuracy and efficiency of GA and PSO optimization schemes on estimating reaction kinetic parameters of biomass pyrolysis," Energy, Elsevier, vol. 176(C), pages 582-588.
    3. Choi, Byungchul & Kim, Cheolho & Yang, Seongsu & Lee, Sejin & Kim, Moonyong & Byun, Sungchun & Jung, Gyeong-gap, 2020. "Effective components on explosive combustion characteristics of wood charcoals," Energy, Elsevier, vol. 197(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Keramiotis, Ch. & Vourliotakis, G. & Skevis, G. & Founti, M.A. & Esarte, C. & Sánchez, N.E. & Millera, A. & Bilbao, R. & Alzueta, M.U., 2012. "Experimental and computational study of methane mixtures pyrolysis in a flow reactor under atmospheric pressure," Energy, Elsevier, vol. 43(1), pages 103-110.
    2. Michela Costa & Maurizio La Villetta & Daniele Piazzullo & Domenico Cirillo, 2021. "A Phenomenological Model of a Downdraft Biomass Gasifier Flexible to the Feedstock Composition and the Reactor Design," Energies, MDPI, vol. 14(14), pages 1-29, July.
    3. Moharana, Manoj Kumar & Peela, Nageswara Rao & Khandekar, Sameer & Kunzru, Deepak, 2011. "Distributed hydrogen production from ethanol in a microfuel processor: Issues and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 524-533, January.
    4. Ozturk, Munir & Saba, Naheed & Altay, Volkan & Iqbal, Rizwan & Hakeem, Khalid Rehman & Jawaid, Mohammad & Ibrahim, Faridah Hanum, 2017. "Biomass and bioenergy: An overview of the development potential in Turkey and Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1285-1302.
    5. Hemant Ghai & Deepak Sakhuja & Shikha Yadav & Preeti Solanki & Chayanika Putatunda & Ravi Kant Bhatia & Arvind Kumar Bhatt & Sunita Varjani & Yung-Hun Yang & Shashi Kant Bhatia & Abhishek Walia, 2022. "An Overview on Co-Pyrolysis of Biodegradable and Non-Biodegradable Wastes," Energies, MDPI, vol. 15(11), pages 1-27, June.
    6. Patra, Tapas Kumar & Mukherjee, Sudeep & Sheth, Pratik N., 2019. "Process simulation of hydrogen rich gas production from producer gas using HTS catalysis," Energy, Elsevier, vol. 173(C), pages 1130-1140.
    7. Bhoi, P.R. & Ouedraogo, A.S. & Soloiu, V. & Quirino, R., 2020. "Recent advances on catalysts for improving hydrocarbon compounds in bio-oil of biomass catalytic pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    8. Lerkkasemsan, Nuttapol, 2017. "Fuzzy logic-based predictive model for biomass pyrolysis," Applied Energy, Elsevier, vol. 185(P2), pages 1019-1030.
    9. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina, 2017. "Thermo-kinetic and diffusion studies of glycerol dehydration to acrolein using HSiW-γ-Al2O3 supported ZrO2 solid acid catalyst," Renewable Energy, Elsevier, vol. 114(PB), pages 794-804.
    10. Watt, G.D., 2014. "A new future for carbohydrate fuel cells," Renewable Energy, Elsevier, vol. 72(C), pages 99-104.
    11. Saadabadi, S. Ali & Thallam Thattai, Aditya & Fan, Liyuan & Lindeboom, Ralph E.F. & Spanjers, Henri & Aravind, P.V., 2019. "Solid Oxide Fuel Cells fuelled with biogas: Potential and constraints," Renewable Energy, Elsevier, vol. 134(C), pages 194-214.
    12. Zhou, Hua & Xie, Taili & You, Fengqi, 2018. "On-line simulation and optimization of a commercial-scale shell entrained-flow gasifier using a novel dynamic reduced order model," Energy, Elsevier, vol. 149(C), pages 516-534.
    13. Wang, Yuqing & Wehrle, Lukas & Banerjee, Aayan & Shi, Yixiang & Deutschmann, Olaf, 2021. "Analysis of a biogas-fed SOFC CHP system based on multi-scale hierarchical modeling," Renewable Energy, Elsevier, vol. 163(C), pages 78-87.
    14. Liu, Yueling & Li, Huan, 2019. "Enhancing conversion from glucose to electricity by ferric chloride in a redox flow fuel cell," Energy, Elsevier, vol. 189(C).
    15. Baruah, Renika & Dixit, Marm & Basarkar, Pratik & Parikh, Dhrupad & Bhargav, Atul, 2015. "Advances in ethanol autothermal reforming," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1345-1353.
    16. Mehrabian, Morteza & Mahmoudimehr, Javad, 2023. "A correlation for optimal steam-to-fuel ratio in a biogas-fueled solid oxide fuel cell with internal steam reforming by using Artificial Neural Networks," Renewable Energy, Elsevier, vol. 219(P1).
    17. Song, Bing & Cao, Xuewen & Gao, Wenran & Aziz, Shazed & Gao, Shuai & Lam, Chun-Ho & Lin, Richen, 2022. "Preparation of nano-biochar from conventional biorefineries for high-value applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    18. Ansis Mezulis & Christiaan Richter & Peteris Lesnicenoks & Ainars Knoks & Sarunas Varnagiris & Marius Urbonavicius & Darius Milcius & Janis Kleperis, 2023. "Studies on Water–Aluminum Scrap Reaction Kinetics in Two Steps and the Efficiency of Green Hydrogen Production," Energies, MDPI, vol. 16(14), pages 1-17, July.
    19. Wang, Chaoqi & Lü, Zhe & Li, Jingwei & Cao, Zhiqun & Wei, Bo & Li, Huan & Shang, Minghao & Su, Chaoxiang, 2020. "Efficient use of waste carton for power generation, tar and fertilizer through direct carbon solid oxide fuel cell," Renewable Energy, Elsevier, vol. 158(C), pages 410-420.
    20. Zeng, Kuo & Soria, José & Gauthier, Daniel & Mazza, Germán & Flamant, Gilles, 2016. "Modeling of beech wood pellet pyrolysis under concentrated solar radiation," Renewable Energy, Elsevier, vol. 99(C), pages 721-729.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:151:y:2018:i:c:p:1007-1017. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.